

S200 Open

User Manual

User Manual S200 Open Update April 2018

AQUALABO

Registered office:

AQUALABO - 90 rue du Professeur Paul MILLIEZ - 94500 CHAMPIGNY SUR MARNE - FRANCE

PLC with capital of 1,492,900 Euros – SIRET (Business registration number) 499 665 230 00011- RCS (Trade & Corporate Register) Créteil – NAF (Business subsector ID number) 2651B - Intra-Community VAT: FR 91 499665230

www.aqualabo.fr Hotline: +33 (0)5.62.75.95.70

E-mail: <u>info@aqualabo.fr</u> Website: www.aqualabo.fr

Subject to technical amendments. Errors and omissions excepted.

Contents

1 General information	7
1.1 General overview	7
1.2 Notes in bold print	7
1.3 Warranty	7
1.4 Electrical connection	8
1.5 Safety Instructions	8
1.6 Damage due to transport	8
2 Technical data	9
2.1 General overview	9
2.2 Variable measurements	10
3 Description	11
4 Operation	12
4.1 Controls	12
4.2 Display	13
4.2.1 Graphic symbol	13
4.2.2 General menu:	14
4.2.3 Example of access to a sub-menu, selection of "Temperature Compen	sation" menu15
4.2.3 Example of access to a sub-menu, selection of "Temperature Compen 5 Installation	sation" menu15 17
4.2.3 Example of access to a sub-menu, selection of "Temperature Compen5 Installation5.1 Assignment of terminals	sation" menu15 17 17
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compened 5 Installation	sation" menu15 17 17 17
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compents Installation	sation" menu15 17 17 17 17 19
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compent 5 Installation	sation" menu15 17 17 17 17 19 19
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compen 5 Installation	sation" menu15 17 17 17 17 19 19 19
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compen 5 Installation	sation" menu15 17 17 17 19 19 19 19 19
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compen 5 Installation	sation" menu15 17 17 17 19 19 19 19 19 19
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compen 5 Installation	sation" menu15 17 17 17 19 19 19 19 19 19 19 19
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compen 5 Installation	sation" menu15 17 17 17 19 19 19 19 19 19 19 19 19 12
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compen 5 Installation	sation" menu15 17 17 17 19 19 19 19 19 19 19 19 19 20 21
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compen 5 Installation	sation" menu15 17 17 17 19 19 19 19 19 19 19 19 19 19 120 20 21
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compen 5 Installation 5.1 Assignment of terminals	sation" menu15 17 17 17 19 19 19 19 19 19 19 19 19 19 19 120 121 21
 4.2.3 Example of access to a sub-menu, selection of "Temperature Compen 5 Installation	sation" menu15 17 17 17 19 19 19 19 19 19 19 19 19 19 19 19 121 21 21

AQUOLABO

7.1.4 Oxygen measurement configuration	24
7.1.5 Calibration methods	25
7.1.6 One-point calibration sequence	26
7.1.7 Two-point calibration	26
7.1.8 Calibration of zero point – detailed procedure	27
7.1.9 Calibration of the final point - detailed procedure	28
7.1.10 Error calibration – message	29
7.2 Digital sensor for measuring nephelometric turbidity	30
7.2.1 General information about the turbidity probe	30
7.2.2 Setting / configuring of displayed measurements	31
7.2.3 Sensor information	33
7.2.4 Configuration of the nephelometric turbidity measurement	33
7.2.5 Method for calibrating nephelometric turbidity	34
8 Controller adjustments	37
8.1 Allocation of controller values	37
8.2 Controller action direction	37
8.3 Assignment of controller output	37
8.4 Pulse frequency	38
8.5 Checking the pulse frequency	38
8.6 Minimum pulse	39
8.7 Controller parameter settings	39
8.7.1 Standard point adjustment	40
8.7.2 Proportional band (P band)	40
8.7.3 Integral action time (integral gain)	40
8.7.4 Hysteresis	40
8.7.5 Max./min. limit value	41
8.7.6 Alarm period	41
8.7.7 Dosage monitoring	41
8.8 Manual operating mode	41
8.8.1 Manual controller mode	41
8.8.2 Automatic controller mode	42
8.9 Date and time	42
8.10 Analog outputs	42

AQUOLABO

8.10.1 Assignment of measured values	43
8.10.2 Definition of current active range	43
8.10.3 Setting the range	43
8.11 Power on delay	44
8.12 Service menu	44
8.12.1 Device data	44
8.12.2 Analog inputs	44
8.12.3 Measurement from a digital sensor	44
8.12.4 Deleting data / return to factory settings	45
8.13 Languages	45
9 Initial commissioning	46
9.1 Checking the hardware installation	46
9.2 Basic settings of the equipment	46
10 Maintenance and servicing	47
10.1 General overview	47
10.2 Cleaning and calibration of probes	47
11 Alarm messages	48
11.1 List of error messages	48
12 MODBUS RTU	49
12.1 Shielding	49
12.2 Communication parameters	49
12.3 MODBUS functions used	49
12.4 MODBUS S200 registry list	50
13 Sensor - Actuator bus (MODBUS RTU)	51
13.1 Shielding	51
13.2 Communication parameters	51
14 Appendix	52
14.1 What to do in the event of a power failure	52
14.2 Battery	52
15 Spare parts and wear parts	53
15.1 Wear parts	53
16 Electrical connection	54
16.1 Assignment of terminals	54

17 Hotline-Aftersales Service contact de	letails50	6
--	-----------	---

1 General information

1.1 General overview

This technical manual contains instructions for installing, commissioning, maintaining and repairing the S200 Open measurement and monitoring device.

Please follow the safety instructions and notes in bold print at all times!

1.2 Notes in bold print

Titles in bold print, alerts and warnings have the following meaning, in this technical manual:

Important:

This alert is used in the event of non-compliance with functional or operating instructions, or when the recommended procedures or misinterpretation of these instructions may cause an accident or injury.

Warning:

This entry is used in the event of non-compliance with functional or operating instructions, or when the recommended procedures or misinterpretation of these instructions may damage the equipment.

Note:

This section is used to highlight key points.

1.3 Warranty

The manufacturer shall ensure the operational safety and reliability of the system when, and only when, the following conditions have been met:

- Installation, connection, adjustment, maintenance and repairs are carried out exclusively by qualified and authorized expert staff.
- Only original spare parts are used for repairs.
- The measuring and monitoring device shall be used in accordance with the information and instructions set out in this manual.

Warning:

The warranty shall not apply if the device is not used as intended.

Note:

Wear parts are not under warranty (see table at end of manual).

User Manual S200 Open Update April 2018

1.4 Electrical connection

Warning:

Only use the power supply specified on the nameplate to run the S200 measurement and monitoring device!

The device is delivered to run, by default, on a 230V/50Hz or 110V/50Hz power supply.

1.5 Safety Instructions

S200 Open measuring and monitoring devices are manufactured and tested according to standards DIN EN 61010-1 / VDE 0411-1. This device left the factory in good condition. In order to maintain this condition, and to ensure the safety during use, the user must comply with the information and warnings given in this manual. If it is suspected that operating in total safety is no longer possible, we recommend that you turn off the device and disable it to prevent any accidental operation.

Follow these instructions:

- if the system shows visible signs of deterioration
- if the system is apparently no longer operational
- after an extended period of storage under poor conditions.

1.6 Damage due to transport

We carefully pack the S200 Open measuring and monitoring devices for transport. Please check that the content of the delivery is complete and in good condition. Any damage due to transport **must be reported immediately** (carrier).

The device must never be exposed to temperatures outside the range of -20 to +70°C (transport and intermediate storage).

Subject to technical amendments. Subject to changing the assembly of components.

2 Technical data

2.1 General overview

Article	Adjustment ranges
Power supply unit	230 V/AC ± 10 % (50/60Hz) 117 V/AC ± 10 % (50/60Hz)
Power consumption	16 VA
Level of protection	IP 65
Fuse (device)	80 mAT (230V) 160 mAT (117V)
Electrical properties of the contact relay Max. direct current/max. start- up current Rated voltage/max. switching voltage Max AC switching capability to direct current	6A/16A 250VAC, 24VDC 6A 6A
Operating temperature	-20° to 50°C
Permissible storage temperature	-20°C to +65°C
Permissible humidity	Max. 90% to +40°C (non- condensing)
Device dimensions	166 x 161 x 73.5 mm (l x h x d)
Weight	Approx. 1.1 kg

Warning:

Unit fuse of 16A max.

2.2 Variable measurements

Measured variable	Measuring and monitoring tools	Resolution
Input current:	0/4 to 20 mA	Charge of 0.01 mA / 50 Ω
Oxygen	0.00 mg/l to 20.00 mg/l 0% to 200%	ModBus digital sensor: 0.1 mg/l and 1%.
Turbidity	0.00 to 50.00 NTU 0.0 to 200.0 NTU 0 to 1,000 NTU 0 to 4,000 NTU	ModBus digital sensor from 0.01 to 1 NTU.

3 Description

The S200 Open measuring and monitoring device is easy to use.

Equipment:

- Backlit display
- Cursor-controlled operation with only 5 keys
- Browser menu in plain text
- Up to 6 different settings simultaneously (depending on the type of code)
- Password protected access
- Ease of integration into process technology via the existing Modbus RTU
- Connection for digital probes, including power supply
- 2 digital outputs for controlling frequency metering pumps
- 3 relay outputs
- 2 digital inputs, switching input or frequency input
- 2 electrically insulated ModBus RTU interfaces
- 2 electrically insulated 0/4 20mA outputs
- Up to 4 adjustable individual PI controls (depending on the type of code)
- Retroactive control via an additional 0/4-20 mA analog input
- Real-time clock with backup battery
- Additional housing for sensors

4 Operation

4.1 Controls

(1) Display Backlit LCD screen with 4 lines of 20 characters each

4.2 Display

4.2.1 Graphic symbol

4.2.1.1 Main screen for visualization of measurements and related units:

	02	7.89	mg/l
	pH	7.82	pH
	°C	29.3	°C
.l.			$Man \rightarrow$
*			

Note:

The example display may differ depending on the device's configuration.

The displayed graphic symbols indicate which keys are available to operate the device.

 \downarrow This indicates that you can switch to the operating level using the appropriate key.

 \rightarrow This indicates that the command function switches from manual to automatic by pressing the key.

4.2.1.2 Visualization:

Grey area \Leftrightarrow area of the menu not visible on the 4-line screen.

Note:

Grey area of the menu not visible on the 4-line screen.

1 Indicates that the cursor can be moved up or down using the cursor keys.

 $\rightarrow\,$ The additional arrow on the right indicates that a sub-menu or input of numeric values can be selected.

Note:

In the instructions for use, the following line appears above the menu window, as follows:

/Service/LCD Display/

This line enables users to easily find this menu item in the device.

/Service/LCD Display/: This means that the selected sub-menu is "Service".

/Service/LCD Display/: This means that an additional sub-menu has been selected.

4.2.2 General menu:

From the main screen (real-time display of measurements), the DOWN arrow gives access to the General menu. The list of items accessible from the General menu is as follows:

$\uparrow \rightarrow$	Calibration
·	Temp. Compens./
	Controller setting
	Manual mode
	Time / date
	Basic settings
	Service

4.2.3 <u>Example of access to a sub-menu, selection of "Temperature Compensation"</u> <u>menu</u>

	Calibration
$\uparrow \rightarrow$	Temp. Compens./
•	Controller setting
	Manual mode

Use the bey to select the "temperature compensation" sub-menu.

$\updownarrow \rightarrow$	Temp. Compens./
	Manual Comp.
	Default temp.
	25.0°C

Use the key to switch the temperature compensation mode from automatic to manual. If the temperature is compensated automatically, Pt100 / Pt1000 is used.

$\updownarrow \rightarrow$	Temp. Compens./
	Automat. Comp.
	Default temp.
	25.0°C

Use the 🗣 key to select the settings input.

AQUOLABO

	Temp. Compens./
	Automat. Comp.
	Default temp.
_	25.0 ↓°C

 \updownarrow A flashing arrow indicates you are in input mode. Use the arrow keys - up or down - to change the numeric value.

 $\leftarrow\,$ This indicates that the cursor key - left arrow - is used to complete the input and the value is saved.

Note:

The information entered can be canceled at any time by pressing the **ESC** key. The old value is retained.

5 Installation

5.1 Assignment of terminals

Eing. = input Ausg. = output

Function Terminals Description L/N/PE 230 V/AC ± 10 % (50/60 Hz) Power supply voltage PE distribution block PE, PE, PE, PE PE distributor 20+21+22 21/22 Digital input 1 Digital input (contact without potential) Electronic contact, 12V power supply voltage 20/-22 Digital input 2 23+24+25 Digital input 24/25 (contact without potential) Electronic contact, 12V power supply voltage +23/-25 Analog output 1 30+31 -30/+31 0 / 4-20 mA max. load 500Ω Analog output 2 32+33 -32/+33 0 / 4-20 mA max. load 500Ω Digital output for electronic monitoring Digital output 1 70+71 Max. load 200 mA / 30V Dosing pumps Digital output 2 72+73 Digital output for electronic monitoring Max. load 200 mA / 30V Dosing pumps Potential-free contact Switching from output relay 1 80+81 Switching from output relay 2 Potential-free contact 82+83 Switching from output relay 3 84+85 Potential-free contact

5.1.1 Assignment of pins

Union	Terminals	Description
Modbus RS485 interface for connecting digital probes	90+91+92+93+94	90 = 0 V, 91 = +12 V, 92 = B, communication
12VDC power supply voltage		93 = A, communication
Modbus RS485 interface for communication with	95+96+97	95 = B
the		96 = A

6 Access and display

6.1 How to use menus

All settings are accessible via a menu. Changing a defined value (for example).

Note:

This manual includes all available menu items. Depending on the selected code (see the specific "Codes" paragraph), all menu items cannot be displayed, and/or, all menu items cannot be selected.

6.1.1 <u>Codes</u>

There are 3 access levels to provide access using codes that protect the device from unauthorized operation.

- A) Code A 00: all entries are locked, except codes B, C and D
- B) Code B 15: user code
- C) Code C 55: maintenance code
- D) Code D NN: code for factory service

6.2 LCD display adjustments

6.2.1 Contrast adjustment

From the general menu, SERVICE sub-menu then, display setting:

$\uparrow \rightarrow$	Contrast. adjust.
	Backlight

The contrast level of the LCD display can be adjusted.

Note:

It may not be possible to adjust the contrast too high or too low. Please adjust the contrast as follows:

Press the ESC key in, keep it in while pressing ESC to increase contrast.

To decrease contrast, press the key while pressing at the same time. This function may need to be adjusted after a factory reset.

6.2.2 Adjusting the backlight

The intensity of the backlight can be changed using the "backlight" menu.

Note:

Backlight intensity: it should be as bright as required. A backlight that is too bright reduces the useful life of the display.

6.3 Display - Loss of communication

If communication with a Modbus RS485 digital sensor is lost, the parameter display, e.g. oxygen in mg/L for an OPTOD sensor, will flash until communication is restored.

7 Use of measurements provided by a Modbus RS485 sensor

7.1 OPTOD digital optical sensor for measuring dissolved oxygen

MODBUS RTU

7.1.1 <u>Reminder of connection to the terminal:</u>

Assignment of terminals			
Color of wires Operation		Union	
Black	Ground	Terminal 90	
Red	DC 12V +	Terminal 91	
Green	RS485 - (B)	Terminal 92	
White	RS485 + (A)	Terminal 93	

7.1.2 Setting / configuring of displayed measurements

The operator has access to the range of parameters from a digital sensor such as the OPTOD from the BASIC SETTINGS submenu.

	Calibration
	Temp. Compens./ Controller setting Manual mode
	Time / date
$\updownarrow \rightarrow$	Basic settings Service

$\updownarrow \rightarrow$	Correct. PT
	Controller param.
	Switch-on delay
	Analog output
	Digi. Input 2
$\uparrow \rightarrow$	Select parameters
•	Language
	Bus address

The SELECT PARAMETERS leads to the list of active parameters from 1 to 6. These are the 6 usable display areas on the screen.

Parameter 1 $\uparrow \rightarrow$ Parameter 2

Selecting one of the six parameters leads to a list of choices:

- No measurement
- Temperature measurement
- Turbidity measurement
- Oxygen digital sensor
- MES-Turb. measurement
- pH digital sensor.

In this case, the temperature or oxygen will be selected as these 2 parameters are delivered by the OPTOD sensor.

Note that these two parameters can be viewed simultaneously by configuring parameters 1 and 2.

The main screen then displays:

-			
	02	7.89	mg/l
	°C	140.00	°C
Ţ			$Man \rightarrow$
Ŧ			

The temperature value from OPTOD is displayed after activating the TEMP COMPENS. menu.

```
Default temp.
25.0°C
Choose sensor
<sub>$</sub>→ Oxygen
```

The main screen then displays:

()2	7.89	mg/l
0	°C	23.10	°C
			Man
\downarrow			man→

7.1.3 Sensor information

The operator has access to information on the connected sensor from the main SERVICE menu.

```
Manual mode
Time / date
Basic settings
$ervice
```

	Display setting	
	Device data	
	Analog inputs	
$\updownarrow \rightarrow$	Oxygen dig. sensor	

Pressing the right arrow on the OX. DIGITAL SENSOR line gives access to the following information:

- Sensor serial number
- Software version
- Hardware version
- Instant measurements of all available parameters for the sensor in question. In the case of the OPTOD sensor: temperature, oxygen as a saturation %, oxygen in mg/L, and oxygen in ppm.

7.1.4 Oxygen measurement configuration

The dissolved oxygen content expressed in mg/L, for a given solution, depends on the temperature of the liquid, salinity and atmospheric pressure if that solution is in contact with the atmosphere.

In terms of temperature, the OPTOD sensor generally uses its own temperature measurement.

The sensor does not have this information for the other two parameters: salinity and atmospheric pressure. They must therefore be provided by the S200 Open device.

The BASIC ADJUSTMENT submenu, from the main menu, provides access to the oxygen digital sensor configuration.

```
Correct. PT
↓→ Oxygen dig. sensor
Controller param.
Switch-on delay
```

The first line MEASURE. VALUE on this screen lets you select units for the dissolved oxygen parameter by choosing the unit: %saturation, mg/L or ppm

Oxygen dig. sensor ↓→ Measval in ppm Temp. measurement 23.27°C

The operator may activate/deactivate the oxygen measurement compensation parameters on the lower levels of the same screen.

The choices are therefore repeated:

- EXT.TEMP.COMPENS.: definite temperature value to apply an external temperature compensation; 25.0 °C by default,
- AIR PRESS. COMPENS.: helps adjust the external compensation value for atmospheric pressure (hPa)
- SALINITY COMP.: known salinity value for the solution studied in g/kg

For example, in the case of atmospheric pressure configuration, the screen displays the following:

The second line represents compensation activation/deactivation: OFF / ON.

By accessing the fourth line, the operator can adjust the pressure value (icon \ddagger : using the Up or Down arrows).

7.1.5 Calibration methods

The S200 Open offers two calibration methods, as a saturation %, for the oxygen probe:

- Calibration of the final value (calibration at one point 100%)
 This method allows the probe to be calibrated quickly. It is a standard method.
- Two-point calibration (0 and 100%)

This two-point method calibrates the zero point and the probe slope. This is a more complex and exact method because a "zero-point solution" is also required.

Select the different calibration methods using the menu: CALIBRATION

```
    Calibr. oxygen
    Calibr. oxygen
    2-point Calibr.
    Reading 100.1 %
```

Calibr	•	0	•	0	00
Calibr	•	100		0	00

Use the right arrow to select the method.

```
$→ 1-point calibr.
Reading 100.1 %
Calibr. 100.0 %
```


7.1.6 One-point calibration sequence

The one-point calibration of the OPTOD sensor is performed by positioning the pre-cleaned sensor in the air above the water surface to create steam-saturated air conditions (100% oxygen saturation).

```
1-point calibr.
Reading 100.1 %
↑→ Calibr. 100.0 %
```

When the cursor is located on the CALIBR. 100.0 % line, the right arrow is used to start the calibration sequence.

```
1-point calibr.
Reading 100.1 %
_____ Calibr. 100.0↓%
```

Pressing the right and left arrows simultaneously will start the measurement sequence.

```
1-point calibr.
Reading 99.9□%
↓→ Calibr. 100.0↓%
```

A square symbol \Box flashes on and off during the measurement sequence. After this sequence, the down arrow allows you to view the updated slope value.

```
Calibr. 100.0↓%
Slope
↓ -0.93 %
```

7.1.7 <u>Two-point calibration</u>

A sodium sulfite solution (concentration < 2 % by weight) is used as the zero point calibration solution for the two-point calibration sequence. The general condition of the sensor must be checked before starting the sequence.

Note:

The oxygen probe must be checked periodically (depending on the proportion of impurities present). It is important to rinse the probe and pellet before each check. Organic deposits on the active pellet, such as mud or biofilm, may result in measurement errors. These deposits can be removed by carefully using hot soapy water and a sponge. Never use an abrasive cleaner.

7.1.8 Calibration of zero point – detailed procedure

The sodium sulfite solution must be ready for calibration.

1. Remove the probe from the original liquid medium, rinse it and check for any deposit of dirt/contamination as described, where applicable.

2. Immerse the probe in a container filled with sodium sulfite solution.

- 3. Keep stirring slowly to ensure local gas exchange at the OPTOD's active membrane.
- 4. Wait until the value is stabilized.
- 5. Use the \clubsuit or \clubsuit arrow key to select the CALIBR 0.0% line.

	2-point	Calibr.
	Reading	0.1 %
$\uparrow \rightarrow$	Calibr.	0.0 %
¥	Calibr.	100.0 %

6. Use the right arrow to start the sequence.

```
2-point Calibr.
Reading 0.1 %
→ ← Calibr. 0.0;%
Calibr. 100.0 %
```

7. Pressing the right and left arrows simultaneously will start the measurement sequence.

	2-point	Calibr.
	Reading	0.10%
→←	Calibr.	0.0↓%
	Calibr.	100.0 %

A flashing square behind the displayed value indicates that the automatic calibration process is in progress. This display turns off when zero point calibration is complete.

8. Thoroughly rinse the probe with clear water and wipe the sensor.

7.1.9 <u>Calibration of the final point - detailed procedure</u>

The second point calibration is performed with 100% oxygen saturation. It is carried out by placing the probe in the air-saturated water, or in the air saturated with steam. In this second case, the sensor may be placed about 2 cm above the surface of the water.

1. Use the

arrow key to select the CALIBR 100.0% line.

	2-point	Calibr.	
	Reading	100.1 %	
	Calibr.	0.0 %	
$\uparrow \rightarrow$	Calibr.	100.0 %	

2. Use the right arrow to start the sequence.

```
2-point Calibr.
Reading 100.1 %
Calibr. 0.0 %
→ ← Calibr. 100.0;%
```

3. Pressing the right and left arrows simultaneously will start the measurement sequence.

	2-point	Calibr.
	Reading	0.1 _%
	Calibr.	0.0 %
$\updownarrow \rightarrow$	Calibr.	100.0\$\$

A flashing square behind the displayed value indicates that the automatic calibration process is in progress. This display turns off when the calibration is complete.

Once the two-point calibration sequence is complete, pressing the DOWN arrow displays the coefficients, zero point and slope, calculated by the sensor during both stages.

7.1.10 Error calibration - message

If, however, due to a manipulation error, the calibration sequence led to the creation of erroneous coefficients, a message to that effect will be repeated on the main screen.

The main screen then displays:

7.2 Digital sensor for measuring nephelometric turbidity

Assignment of terminals		
Color of wires	Operation	Connection
Black	Ground	Terminal 90
Red	DC 12V +	Terminal 91
Green	RS485 - (B)	Terminal 92
White	RS485 + (A)	Terminal 93

7.2.1 General information about the turbidity probe

Turbidity sensors are optical sensors. The sensor measurement principle is based on the IR light method dispersed at 90° (ISO 7027). The measurement is carried out in the infrared range. This sensor may age during operation which results in sensor drift. These influences are offset by calibration.

The sensor is calibrated in the factory, so there is no need to perform calibration during initial commissioning. The sensor shall be cleaned at regular intervals, during operation, depending on the level of contamination of the liquid studied.

 $\uparrow \rightarrow$

7.2.2 <u>Setting / configuring of displayed measurements</u>

The operator has access to the choice of parameters coming from a digital sensor in the BASIC ADJUSTMENT submenu.

```
Calibration
Temp. Compens./
Controller setting
Manual mode
Time / date
Basic settings
Service
```

```
Correct. PT
Controller param.
Switch-on delay
Analog output
Digi. Input 2
Select parameters
Language
Bus address
```

The SELECT PARAMETERS choice leads to the list of active parameters from 1 to 6. These are the 6 usable display areas on the screen.

```
    Parameter 1
    Parameter 2
    ...
```

Selecting one of the six parameters leads to a list of choices:

- No measurement
- Temperature measurement
- Turbidity measurement
- Oxygen digital sensor
- MES-Turb. measurement
- pH digital sensor.

In this case, temperature or turbidity will be selected as these 2 parameters are delivered by the sensor.

Note that these two parameters can be viewed simultaneously by configuring parameters 1 and 2.

The main screen then displays:

SS	2.9	NTU
°C	140.00	°C
		Man
\downarrow		riall→

The temperature value from the turbidity sensor is displayed after activation in the TEMP. COMPENS. menu.

$\uparrow \rightarrow$	Default temp.
¥	25.0°C
	Choose sensor
	Turbidity

The main screen then displays:

SS	2.9	NTU
°C	23.10	°C
Ļ		Man→

User Manual S200 Open Update April 2018

7.2.3 Sensor information

The operator has access to information on the connected sensor from the main SERVICE menu.

```
Manual mode
Time / date
Basic settings
↓→ Service
```

```
Display setting
Device data
Analog inputs
Turbidity meas.
```

Pressing the right arrow in the TURBIDITY MEASUREMENT LINE gives access to the following information:

- Sensor serial number
- Software version
- Hardware version
- Instant measurements of all available parameters for the sensor in question.

7.2.4 Configuration of the nephelometric turbidity measurement

The BASIC ADJUSTMENT submenu provides access to the digital nephelometric turbidity sensor configuration. In this case, the sensor work range is selected from among the four provided.

```
Correct. PT

↓→ Turbidity meas.

Controller param.

Switch-on delay
```

The first RANGE line on this screen is used to select the range of measurement from among the 4 available:

0-50; 0-200; 0-1,000 or 0-4,000 NTU

```
Turbidity meas.

t→ Range 0-50 NTU

Temperature

measurement

23.27°C
```


Note:

After selecting the measurement range and in the event of excess when the S200 Open device returns to Measurement Mode, the measurement will remain frozen on the screen. In this case, and if the measurement remains frozen, return to the measurement range selection menu to choose a wider range.

7.2.5 Method for calibrating nephelometric turbidity

As noted above, the nephelometric turbidity sensor has 4 measurement ranges, with separate calibration coefficients, all calibrated using the menu: CALIBRATION. The calibration sequence for the 0-200 NTU range is described below.

Note:

The turbidity probe must be checked periodically (depending on the proportion of impurities present). It is important to rinse the probe before each check. Organic deposits on the probe, such as mud or biofilm, may result in measurement errors. These deposits can be carefully removed using hot soapy water and a soft sponge. Never use an abrasive cleaner. Limestone deposits can be removed using a dilute hydrochloric acid solution (max . 5%).

7.2.5.1 Calibration of zero point – detailed procedure

Operating conditions:

The sensor is placed in distilled water for this calibration step. The total absence of bubbles on the active part of the sensor (optical part) will be checked.

Select CALIBRATION in the general menu:

	Range 0-20)0 NTU
	Reading	3.1 NTU
$\uparrow \rightarrow$	Calibr.	0.0 NTU
Ŧ	Calibr	.0.0 NTU

Use the right arrow, on the first accessible line, to activate the calibration sequence.

Pressing the right and left arrows simultaneously will start the measurement sequence.

	Range 0-2	200 NTU
	Reading	3.1 _ntu
$\uparrow \rightarrow$	Calibr.	0.0 NTU
Ť	Calibr.	0.0 NTU

A square symbol \Box flashes on and off during the calibration sequence.

When the first calibration stage has been completed, remove the distilled water sensor and wipe it.

7.2.5.2 Calibration of the second point - detailed procedure

Operating conditions:

The second point is calibrated in an aqueous suspension of formazine with constant stirring.

To calibrate the turbidity sensor, use a reference solution in the median area of the given measuring range, such as a 100 NTU reference solution for the 0-200 NTU range.

Use the DOWN arrow key to select the second CALIBR. 0.0 NTU line.

	Range 0-	200 NTU	
	Reading	100.1 NTU	ſ
	Calibr.	0.0 NTU	ſ
$\updownarrow \rightarrow$	Calibr.	0.0 NTU	ſ

Use the right arrow to start the sequence.

Range 0-200 NTU Reading 100.1 NTU Calibr. 0.0 NTU ↓→ Calibr. ..0.0 NTU

Use the UP arrow to adjust the digital display to the value of the aqueous formazine suspension used, for example, 100.0 NTU.

Once the suspension is perfectly uniform, pressing the right and left arrows simultaneously will start the measurement sequence.

	Range 0-	200 NTU	
	Reading	100.1 NTU	
	Calibr.	0.0 NTU	
$\uparrow \rightarrow$	Calibr.	100.0 NTU	

Again, a flashing square behind the displayed value indicates that the automatic calibration process is in progress. This display turns off when the calibration is complete.

Once the two-point calibration sequence is complete, pressing the DOWN arrow displays the coefficients, zero point and slope, calculated by the sensor during both stages..

	Zero-Poir	nt	
		0.00	NTU
	Slope		
↑		2.01	010

8 Controller adjustments

8.1 Allocation of controller values

Up to four individual controllers can be assigned to different values.

One or more controllers can be enabled in the BASIC/CONTROL PARAM. ADJUSTMENT submenu.

The operator then has 4 choices.

```
$\therefore $\product $\product$ $\pro
```

An initial choice allows the operator to define the measurement related to this controller.

- Temperature measurement
- Turbidity measurement
- Ox. digital sensor
- MES-Turb. measurement
- pH digital sensor
- No measurement.

8.2 Controller action direction

The controller action direction shall be determined using the REDUCE/INCREASE adjustment. For example, REDUCE indicates that the controller is running when the value is greater than the pre-determined set point. As a result, the value decreases (lower value).

8.3 Assignment of controller output

The controller output signal may be assigned to various actuators (relay, etc.).

AQUOLABO	$\mathbf{)}$
----------	--------------

	Working direct.
	Reduce
	Controller output
$\uparrow \rightarrow$	Relay 1

The operator may choose: relay 1, relay 2, digital output 1, digital output 2, analog output 1 or analog output 2.

8.4 Pulse frequency

The controller output is switched so as to pulse the frequency by means of the pulse setting. A 0 p/h setting allows the controller to switch for controller pulse intervals. The numerical value such as 36 p/h indicates that 3,600 pulses/hour are released at 100% of dosage capacity.

```
Controller output
Relay 1
Pulse frequency
100* 0 P/h
```

The right arrow lets you change the pulse numerical value.

```
Controller output
Relay 1
Pulse frequency
100* 0;P/h
```

8.5 Checking the pulse frequency

The pulse interval time setting determines the total pulse interval time. A controlled variable of 50% indicates that the pulses and interval time are of equivalent duration when the value is set to 10 sec., in this case, it would return to 5 seconds. A controlled variable of 0 % indicates no pulse.

A controlled variable of 100% indicates no interval.

```
Pulse frequency
100* 36 P/h
Pulse interval
10s
```


8.6 Minimum pulse

The "Minimum pulse" setting determines the shortest pulse time for a pulse interval controller. This is particularly important for the widest actuators, since shorter pulses cannot be processed.

Note:

The minimum pulse time shall not exceed 25% of the pulse interval time.

```
Pulse interval
10s
Minimum pulse
0.5s
```

8.7 Controller parameter settings

Select the CONTROLLER SETTING function in the main menu.

```
\uparrow \rightarrow Temperature contr.
```

The right arrow gives access to the setting details. The example described below represents the temperature parameter.

Set point ↓→ 0.0°C P-range 0.0°C

Each item can be changed, right arrow then up or down, to set a numerical value.

```
Set point

1.5°¢C

P-range

0.0°C
```


Once the quantity is changed, adjusted to the desired value, the left arrow validates and accesses a controller setting item in the list. The available adjustable items are shown below.

```
Reset time

↓→ 0 sec

Hysteresis

0.0°C
```

```
Max. limit val.

↓→ 0.0°C

Min. limit val.

0.0°C
```

```
Limit Delay

↓→ 0 sec

Dosing monit.

0 min.
```

8.7.1 Standard point adjustment

Value to be defined for the selected measurement, example temperature in °C.

8.7.2 Proportional band (P band)

Note:

When a proportional band of 0.00 is set, the controller operates like an ON/OFF controller without the proportional action.

The proportional band setting determines the monitoring range of the proportional controller. If the differential between the adjustment point reaches the size of the proportional band, the control operates with a controlled variable of 100%.

8.7.3 Integral action time (integral gain)

Note:

When an integral action time of 0 sec. is defined, checking operates like a proportional monitor, as long as a P band has been determined.

When adjusting the integral action time, the PI check monitoring rate is defined.

8.7.4 <u>Hysteresis</u>

If the controller is used like an ON/OFF controller, the hysteresis parameter can be used to adjust a default dead band around the set point.

Example:

Set point = 7.0°C Hysteresis = 0.5°C

The hysteresis range of 0.5 is evenly distributed around the set point. The controller becomes enabled at 6.75°C and disabled at 7.25°C.

The differential is therefore 0.5°C = hysteresis

8.7.5 <u>Max./min. limit value</u>

The threshold setting monitors the maximum deviation of the actual value. When you reach the predetermined limits, the alarm relay is activated and a related message appears in the status bar.

The alarm message and display may be delayed for an adjustable time.

8.7.6 <u>Alarm period</u>

Once the predetermined limit values have been reached, the alarm message is delayed until the scheduled time. If you set the numerical value to 0 sec, the alarm message appears immediately (without delay).

8.7.7 Dosage monitoring

If dosing is performed with 100% capacity for a longer period than the set dosing time, dosing will be interrupted and an alarm message will appear. Once the predetermined limits have been reached, the alarm relay is activated and a related message appears in the status bar.

The alarm message must be confirmed by switching from **Automatic** to **Manual Operating** mode. If you set the numerical value to 0 min, the alarm message appears immediately (without delay).

8.8 Manual operating mode

Manual mode is switched automatic on the main display screen for measurements by pressing the right arrow.

8.8.1 Manual controller mode

The manual mode allows you to act on the controller outputs by neutralizing the settings defined for automatic operation.

The variables managed by the controller can be set in the controller's manual settings. Each controller can be set separately. The output signal provided for the controller is managed directly, such as the relay, analog output, etc.

The preset monitoring type for the controller is used for monitoring, pulse frequency or pulse intervals.

For example, the action of a single, normally open relay is managed in manual mode, by adjusting to 100% for a period of X minutes when closed.

	Manual mode
$\uparrow \rightarrow$	Contr. 1 100%.
•	Auto switch-off
	After 1 min.

The adjustable "automatic stop" time indicates a override stop at the scheduled time. The predetermined variable is then set at 0%.

8.8.2 Automatic controller mode

2	Automat	ic mo	de
(Contr.	1	0%.

When the controller is in automatic mode, the current controlled variable.

8.9 Date and time

The date and time settings are available in the main menu to adjust the clock built into the device in real time.

	08:50	25.03.18	
$\updownarrow \rightarrow$	Minutes	49	
	Hours		
	Day	25	

Each item can be changed to make the adjustment (minutes, hours, days, months, year).

	08:50	25.03.18	
←	Day	25	
	Month	3	
	Year	18	

8.10 Analog outputs

The S200 measurement and monitoring device enables all measurement values to be output as standard current signals of 0/4-20mA according to standard DIN IEC 60381-1. You can adjust the output type at this location. BASIC ADJUSTMENT has to be chosen from the main menu and then ANALOG OUTPUT.

$\uparrow \rightarrow$	Analog.	Output	1
¥	Analog.	Output	2

8.10.1 Assignment of measured values

Advancing through the menus:

BASIC ANALOG / ANALOG OUTPUT / ANALOG OUTPUT1

If analog output 1 is used to transfer the temperature measurement, the following screen will be obtained:

```
t→ Temp. measurement
Range 4-20mA
0/4mA = 0.00°C
20 mA = 14.00°C
```

Various parameters can be assigned to analog outputs, such as temperature measurement and an accessible parameter with a digital sensor.

When the analog output is used as a controller, the "No Measurement" setting must be selected here.

8.10.2 Definition of current active range

The RANGE line allows you to switch between two current range choices:

- Conventional 4-20 mA
- Extended 0-20mA.

```
Temp. measurement

Range 0-20mA

→

0/4mA = 0.00°C

20 mA = 14.00°C
```

8.10.3 Setting the range

Temp. measurement Range 0-20mA $0/4mA = 10.00^{\circ}C$ $20 mA = 30.00^{\circ}C$

Lines 3 and 4 of this screen determine the values of the parameter, e.g. temperature, associated with the low and high limits of the output current range.

8.11 Power on delay

This function is accessible in the menu: BASIC ADJUSTMENT/ SWITCH-ON DELAY

```
Switch-on delay
Delay time
3 min.
↓→
```

Device operation can be offset as a result of loss of power. The time adjustment range is from 0 to 60 minutes.

8.12 Service menu

The SERVICE menu is accessible directly in the main menu. It provides key information on the device, connected digital sensor, and analog inputs.

```
Display setting
Device data
Analog inputs
Turbidity meas.
```

Note: Refer to the specific paragraph for the display setting.

8.12.1 Device data

This submenu provides access to three key items for the device:

- Serial number
- Software version
- Hardware version.

8.12.2 Analog inputs

How analog inputs operate can be checked here.

8.12.3 Measurement from a digital sensor

For example, as the device is associated with a digital nephelometric turbidity sensor, this TURBIDITE MEASUREMENT submenu provides:

Serial number

- Software version
- Hardware version
- All measurements provided by the given sensor.

8.12.4 Deleting data / return to factory settings

The DELETE DATA menu allows you to restore the factory settings (reset).

Pressing the down and right arrows simultaneously resets the device.

8.13 Languages

The language is chosen in the BASIC SETTING / LANGUAGES sub-menu.

9 Initial commissioning

9.1 Checking the hardware installation

Warning:

Before connecting the power supply to the device, check the supply voltage with respect to the data plate and compare them.

Check the wiring of the device with respect to the wiring diagram.

9.2 Basic settings of the equipment

Firstly, set the display language for the various menus.

Note that the BASIC SETTING submenu is accessible only after you have entered the Level 3 code, see CODES paragraph.

Refer to the specific paragraphs, using the contents, to define the read and displayed parameters, as well as the entire configuration of the controller, analog outputs, etc.

10 Maintenance and servicing

10.1 General overview

Be sure to use only a damp cloth to clean the casing. The use of strong, caustic or abrasive cleaning agents (acid cleaners, etc.) is not recommended!

The S200 measurement and monitoring device is easy to service, but ensure that a qualified technician checks it and performs maintenance at regular intervals.

Please contact us for any other questions regarding our measurement, monitoring and metering system.

10.2 Cleaning and calibration of probes

Depending on the water quality, the probes should be cleaned at intervals of 1 to 6 months (or sooner if required). Calibration is required according to the type of probe.

Warning:

Disable the metering function before removing the probes.

11 Alarm messages

11.1 List of error messages

Alarm message	Cause	Activity	Solution
Limit value of controller 1	The lower or upper limit value of controller 1 has been exceeded/fallen below	Alarm relay switches	Check the measurement and monitor
Limit value of controller 2	The lower or upper limit value of controller 2 has been exceeded/fallen below	Alarm relay switches	Check the measurement and monitor
Limit value of controller 3	The lower or upper limit value of controller 3 has been exceeded/fallen below	Alarm relay switches	Check the measurement and monitor
Limit value of controller 4	The lower or upper limit value of controller 4 has been exceeded/fallen below	Alarm relay switches	Check the measurement and monitor
Monitoring the metering of controller 1	Controller 1 operated in a control value of 100 % for a period exceeding the metering monitoring time.	Controller 1 is switched off and the alarm relay switched	Check the measuring and monitoring; confirm the message by briefly switching to manual mode.
Monitoring the metering of controller 2	Controller 2 operated in a control value of 100 % for a period exceeding the metering monitoring time.	Controller 2 is switched off and the alarm relay switched	T
Monitoring the metering of controller 3	Controller 3 operated in a control value of 100 % for a period exceeding the metering monitoring time.	Controller 3 is switched off and the alarm relay switched	I
Monitoring the metering of controller 4	Controller 4 operated in a control value of 100 % for a period exceeding the metering monitoring time.	Controller 4 is switched off and the alarm relay switched	H
Delayed start-up	Turning on the S200 power supply	Start-up of the controller will be delayed for the set period of time	п
External stop of the controller	Digital input 1 of terminal 21/22 has been switched	The controller is stopped	If digital input 1 is not switched, the controller will work again
Calibrat. error. O2	An error occurred while calibrating the oxygen digital sensor	The controller function remains active, the wrong calibration value is accepted	Repeat calibration or replace probe
Calibrat. error. NTU	An error occurred while calibrating the turbidity digital sensor	The controller function remains active, the wrong calibration value is accepted	Repeat calibration or replace probe

12 MODBUS RTU

The S200 measurement and control device is equipped with a Modbus RTU interface. This piece of equipment has an RS 485 interface.

Shielding = Terminal 97

A = + Terminal 96B = - Terminal 95

12.1 Shielding

The use of shielded cables provides high protection against electromagnetic interference, especially high frequencies. However, the effectiveness of the shield depends on the careful installation of the cable.

The shielding is located near the main ModBus.

12.2 Communication parameters

Transmission speed:9,600 bpsData bits:8Start-up bits:1Shutdown bits:1

Parity: none

12.3 MODBUS functions used

The following MODBUS functions are used:

- 04 (0x04) Querying registry values max. reading 40 registers
- 06 (0x06) Single registry writing writing 1 register.

12.4 MODBUS S200 registry list

Registry	Description	Unit	Range of values	Position of	R/W
				point	
0	pH measuring value	pН	-2001,600	xx.xx	R
1	ORP measuring value	mV	-1,500/+1,500	хххх	R
2	POT Measurement - Measurement	mg/L	0.500	XXX.X	R
3	Temperature value measurement	°C	-3,00014,000	xxx.xx	R
4					
5	Conductivity measurement	uS mS	0 2000	Measurement	R
		1		range	
6	Temperature value measurement Conductivity sensor	°C	-3000 14000	xxx.xx	R
7					
8					
9	Measurement of flowrate water	L/h	0 ±120	ххх	R
10	Active chlorine measurement	mg/l	0,500	x.xx	R
11					
12					
37	Digital sensor turbidity measurement	°C	-3000 14000	xxx.xx	R
38	Turbidity measurement	NTU	0 4000	Measurement range	R
41	O2 digital sensor temperature measurement	°C	-3000 14000	xxx.xx	R
43	O2 digital sensor measurement	%	0 2000	xxx.xx	R

Note:

To read register 0 (pH measurement value), select the ModBus 3001 registry. The address of ModBUS is incremented by +1 at a time.

13 Sensor - Actuator bus (MODBUS RTU)

The S200 measurement and monitoring device is equipped with a sensor - actuator bus. The Modbus RTU protocol is used. This piece of equipment has an RS 485 interface. Shielding = Terminal 94

A = + Terminal 93

B = - Terminal 92

+12V = terminal 91

0V = terminal 90

A max. load of 200mA is allowed for a 12V power supply.

13.1 Shielding

The use of shielded cables provides high protection against electromagnetic interference, especially high frequencies. However, the effectiveness of the shield depends on the careful installation of the cable.

The shielding is located near the main ModBus.

13.2 Communication parameters

Transmission sp	eed:	9,600 bps
Data bits: Start-up bits:	8 1	
Shutdown bits: Parity: none	1	

14 Appendix

14.1 What to do in the event of a power failure

If there is a power failure, the unit keeps its last operating state. Once power is restored, the device continues to operate with all previous settings.

14.2 Battery

The S200 measurement and monitoring device is equipped with a battery so that the internal clock continues to operate even when there is no power supply. The battery must be replaced if, for example, the date or time changes abruptly (lithium battery CR 2032)

Fig. 13.2-1: View of the electronic board with the housing lid open

15 Spare parts and wear parts

15.1 Wear parts

Article	Reference
CR 2032 type battery	

16.1 Assignment of terminals

No.	Post	Function
L	L	Power supply (see nameplate)
Ν	Ν	Warning: The voltage on the nameplate must be complied with.
PE	PE	
PE	PE	PE terminal block
PE	PE	
PE	PE	
PE	PE	
1		Measurement input 1, e.g. pH measurement
2	+	
4		Measurement input 2, e.g. Redox or 0/4-20 mA measurement
5	+	with internal jumper
6	\bot	Pt 100 or Pt 1000 temperature sensor connection
7	+	
10		Add-on module connection
11		Please see the module description for more information about assignment.
12		
13		
20	+ 12V	Digital input 1 - pulse input or switching input
21	Л	Contact closed = controller shutdown
22	\bot	21 22
23	+ 12V	Digital input 2 - pulse input or switching input
24		
25		2425
30		Analog output 1 0/420 mA (500Ω load)
31	+	
32		Analog output 2 0/420 mA (500Ω load)
33	+	
70		Digital output 1 max. 200mA / 30V
71	<u> </u>	e.g. For monitoring a membrane metering pump
72		Digital output 2 max. 200mA / 30V
73		e.g. For monitoring a membrane metering pump

No.	Terminal	Function
80 81	<u></u>	Relay 1
82 83		Relay 2
84 85	<u> </u>	Relay 3
	<u></u>	
90	0 V	Power supply for bus devices
91	+ 12 V	12V DC 200mA
92	В	Sensor - Actuator - Bus
93	А	2. RS 485 Interface (Modbus RTU)
94		
95	В	1. RS 485 Interface (Modbus RTU)
96	А	, , , , , , , , , , , , , , , , , , ,
97		

17 Hotline-Aftersales Service contact details

AQUALABO ZA de Bellevue 115 Rue Michel Marion 56850 CAUDAN FRANCE Hotline: +33 (0)5.62.75.95.70