

## **ThermoFisher** SCIENTIFIC

# X선 형광분석 소개 Introduction to X-Ray Fluorescence

The world leader in serving science

# How the XRF Works



- Each individual element produces its own set of characteristic x-rays; the basis for qualitative analysis
- By counting the number of characteristic xrays of a given element we can determine its concentration; the basis for quantitative analysis













| H<br>Hydrogen<br>1                                              | X-ray Energy Reference                                  |                                                |                                                                |                                                       |                                                             |                                                        |                                                            |                                                          |                                                          |                                                                 |                                                                      |                                                            |                                                         |                                                        |                                                                |                                                                  |                                                           |                  |
|-----------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|------------------|
| Li<br>Lithium                                                   | Be<br>Beryllium                                         |                                                | 2                                                              | <u></u>                                               |                                                             |                                                        |                                                            |                                                          |                                                          |                                                                 |                                                                      | 0.18<br>Boron<br>5                                         | 0.28<br>Carbon<br>6                                     | 0.39<br>Nitrogen<br>7                                  | 0.53<br>Oxygen                                                 | 0.68<br>Fluorine<br>9                                            | 0.85<br>Ne<br>Neon<br>10                                  |                  |
| 1.04 1.07<br>Na<br>Sodium<br>11                                 | 1.25 1.30<br>Mg<br>Magnesium<br>12                      |                                                |                                                                |                                                       |                                                             |                                                        |                                                            |                                                          |                                                          |                                                                 |                                                                      | 1.49 1.55<br><b>Al</b><br>Aluminum<br>13                   | 1.74 1.83<br>Silicon<br>14                              | 2.02 2.14<br>P<br>Phosphorus<br>15                     | 2.31 2.46<br>S<br>Sulfur<br>16                                 | 2.62 2.82<br>Cl<br>Chlorine<br>17                                | 2.96 3.19<br>Ar<br>Argon<br>18                            | ĸ,' ĸ<br>Ag      |
| 3.31 3.59<br>K<br>Potassium<br>19                               | 3.69 4.01<br><b>Ca</b><br>Calcium<br>20                 | 4.09 4.46<br>Sc<br>Scandium<br>21<br>0.40 0.40 | 4.51 4.93<br>Titanium<br>22<br>0.45 0.46                       | 4.95 5.43<br>V<br>Vanadium<br>23<br>0.51 0.52         | 5.41 5.95<br>Cr<br>Chromium<br>24<br>0.57 0.58              | 5.90 6.49<br>Mn<br>Manganese<br>25<br>0.64 0.65        | 6.40 7.06<br>Fe<br>Iron<br>26<br>0.70 0.72                 | 6.93 7.65<br>Co<br>Cobalt<br>27<br>0.78 0.79             | 7.48 8.26<br>Ni<br>Nickel<br>28<br>0.85 0.87             | 8.05 8.90<br>Cu<br>Copper<br>29<br>0.93 0.95                    | 8.64 9.57<br>Zn<br>Zinc<br>30<br>1.01 1.03                           | 9.25 10.26<br>Ga<br>Gallium<br>31<br>1.10 1.12             | 9.89 10.98<br><b>Ge</b><br>Germanium<br>32<br>1.19 1.21 | 10.54 11.73<br>As<br>Arsenic<br>33<br>1.28 1.32        | 11.22 12.50<br>Se<br>Selenium<br>34<br>1.38 1.42               | 11.92 13.29<br>Br<br>Bromine<br>35<br>1.48 1.53                  | 12.65 14.11<br><b>Kr</b><br>Krypton<br>36<br>1.59 1.64    | Key to<br>Energy |
| 13.39 14.96<br><b>Rb</b><br>Rubidium                            | 14.16 15.83<br>Sr<br>Strontium                          | 14.96 16.74<br>Y<br>Yttrium                    | 15.77 17.67<br>Zr<br>Zirconium                                 | 16.61 18.62<br>Nb<br>Niobium                          | 17.48 19.61<br><b>Mo</b><br>Molybdenum                      | 18.41 20.59<br>TC<br>Technetium                        | 19.28 21.66<br><b>Ru</b><br>Ruthenium                      | 20.21 22.72<br><b>Rh</b><br>Rhodium                      | 21.18 23.82<br>Pd<br>Palladium                           | 22.16 24.94<br>Ag<br>Silver                                     | 23.17 26.09<br>Cd<br>Cadmium                                         | 24.21 27.27<br>In<br>Indium                                | 25.27 28.48<br>Sn<br>Tin<br>50                          | 26.36 29.72<br><b>Sb</b><br>Antimony                   | 27.47 30.99<br><b>Te</b><br>Tellurium                          | 28.61 32.29                                                      | 29.80 33.64<br>Xe<br>Xenon                                | values           |
| 1.69 1.75<br>30.97 34.98<br>Cs<br>Cesium<br>55                  | 1.81 1.87<br>32.19 36.38<br><b>Ba</b><br>Barium<br>56   | 1.92 2.00                                      | 2.04 2.12<br>55.76 63.21<br>Hf<br>Hafnium<br>72                | 2.17 2.26<br>57.52 65.21<br>Ta<br>Tantalum<br>73      | 2.29 2.40<br>59.31 67.23<br>W<br>Tungsten<br>74             | 2.42 2.54<br>61.13 69.30<br><b>Re</b><br>Rhenium<br>75 | 2.56 2.68<br>62.99 71.40<br>Osmium<br>76                   | 2.70 2.83<br>64.89 73.55<br>Ir<br>Iridium<br>77          | 2.84 2.99<br>66.82 75.74<br>Pt<br>Platinum<br>78         | 2.98 3.15<br>68.79 77.97<br>Au<br>Gold<br>79                    | 3.13 3.32<br>70.82 80.26<br>Hg<br>Mercury<br>80                      | 3.29 3.49<br>72.86 82.56<br><b>TI</b><br>Thallium<br>81    | 3.44 3.66<br>74.96 84.92<br>Pb<br>Lead<br>82            | 3.61 3.84<br>77.10 87.34<br>Bismuth<br>83              | 3.77 4.03<br>79.30 89.81<br><b>PO</b><br>Polonium<br>84        | 3.94 4.22<br>81.53 92.32<br>At<br>Astatine<br>85                 | 4.11 4.42<br>83.80 94.88<br><b>Rn</b><br>Radon<br>86      |                  |
| 4.29 4.62<br>86.11 97.47<br>Fr<br>Francium<br>87<br>12.03 14.77 | 4.47 4.83<br>88.47 100.1<br>Radium<br>88<br>12.34 15.23 | 57-71                                          | 7.90 9.02<br>33.44 37.80<br>La<br>Lanthanum<br>57<br>4.65 5.04 | 8.15 9.34<br>34.72 39.26<br>Cerium<br>58<br>4.84 5.26 | 8.40 9.67<br>36.02 40.75<br>Praseodymium<br>59<br>5.03 5.49 | 8.65 10.01<br>37.36 42.27<br>Ncd<br>Neodymium<br>60    | 8.91 10.35<br>38.65 43.95<br>Promethium<br>61<br>5.43 5.96 | 9.19 10.71<br>40.12 45.40<br>Samarium<br>62<br>5.64 6.21 | 9.44 11.07<br>41.53 47.03<br>Europium<br>63<br>5.85 6.46 | 9.71 11.44<br>42.98 48.72<br>Gd<br>Gadolinium<br>64<br>606 6.71 | 9.99 11.82<br>44.47 50.39<br><b>Tb</b><br>Terbium<br>65<br>5.28 6.98 | 10.27 12.21<br>45.99 52.17<br>Dysprosium<br>66<br>650 7.25 | 47.53 53.93<br>Ho<br>Holmium<br>67<br>6.72 7.53         | 10.84 13.02<br>49.10 55.69<br>Erbium<br>68<br>695 7.81 | 11.13 13.44<br>50.73 57.58<br>Tm<br>Thulium<br>69<br>7.18 8.10 | 11.42 13.87<br>52.36 59.35<br>Yb<br>Ytterbium<br>70<br>7.41 8.40 | 11.72 14.32<br>54.06 61.28<br>Lutetium<br>71<br>7.65 8.71 | Light<br>Element |
|                                                                 |                                                         |                                                | 90.89 102.8<br>Ac<br>Actinium<br>12.65 15.71                   | 93.35 105.6<br>Th<br>Thorium<br>90<br>12.97 16.20     | 95.86 108.4<br>Pa<br>Protactinium<br>91<br>13.29 16.70      | 98.43 111.3<br>U<br>Uranium<br>92<br>13.61 17.22       | Neptunium<br>13.95 17.74                                   | Plutonium<br>94<br>14.28 18.28                           | 100.5 120.5<br>Americium<br>95<br>14.62 18.83            | Curium<br>96<br>14.96 19.39                                     | Berkelium<br>97<br>15.31 19.97                                       | Californium<br>98<br>15.66 20.56                           | Einsteinium<br>99<br>16.02 21.17                        | Fermium<br>16.38 21.79                                 | Mendelevium<br>16.74 22.55                                     | 127.4 145.9<br>Nobelium<br>102<br>17.11 23.23                    | Lawrencium<br>103<br>17.48 23.93                          | 1                |



5 Proprietary & Confidential





# Application for HHXRF



Energy Markets / Positive Material Identification (PMI)



Fabrication and Metals QC/QA



Scrap Recycling



Weld analysis



# **ThermoFisher** SCIENTIFIC

# **XL5 Coatings Mode**

Mathieu Bauer, Senior Application Scientist SEATW Sales Meeting, Bali May 9-11 2018

The world leader in serving science

camphotograp

- Designed to determine the coat weight or the coating thickness of metal coatings
- Enables testing of large or irregularly shaped samples, as well as small-diameter wiring or tubing and direct testing of coated samples at the plating line
- Enables analysis of up to four coating layers
- Layer can be pure element, alloy or compound
- Substrate can be pure element, alloy, plastic or wood.
- Optional 3mm small spot analysis
- Element suite 30 elements including:

Pb, **Hg**, Au, Pt, **W**, Sb, Sn, Cd, Ag, Pd, **Rh, Ru**, Mo, Nb, Zr, **Y**, Zn, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, S, P, Si, Al, Mg

• Multi point standardization feature enables user to easily optimize calibration with known standards.





# Markets and applications

Coatings generally applied for decorative purpose of for improving corrosion wear and heat resistance solderability or electrical conductivity.

- Metal Finishing (40% of total avail. market)
  - Automotive (Cr/Ni/Cu/Plastics, ZnNi/LAS, passivation coatings)
  - Aerospace (ZnNi/LAS, Cd/LAS, etc.)
  - Fasteners (NiP/LAS, Zn/LAS, etc.)
  - Fixtures (Cr/Ni/Brass, Cr/Ni/Cu/ABS etc.)
  - Cutting Tools (WC/TS etc.)
  - Electrical appliances (Zn/Fe NiP/LAS etc.)
  - Accessories, apparel (Au/Ni/Cu/Zn etc.)
  - Jewelry & Watchmaking (Rh/Brass etc.)
  - Electrification products (Ag/Cu etc.)
- Electronics (60% of total avail. market)
  - PCB
  - Connectors
  - Hard drives





## Handheld XRF suitable for metal finishing but not in electronics



# **Coating Mode Basics**

- Using General Metal Mode assumes to analyze homogeneous metals and alloys. Units of the measure is wt.%, ppm, etc.
- Coated materials are heterogeneous: composition at the surface is different from composition of the core. General Metal Mode not accurate

Coatings Mode conceived to measure coat weight or layer thicknesses applied on a substrate, not to measure the composition of layer or substrate

- Units designating quantity of coating: applicable to surface, not to bulk composition.
  - Layer Thickness: unit of length e.g. μm
  - Coat Weight: mass per unit of area, e.g. g/m<sup>2</sup>

### In coatings analysis, the user needs to define substrate material and the sequence of layers









# Coatings Mode Profile. Get Started!

 Unlike General Metals and other Modes, Coatings Mode can't operate without defining the substrate and the sequence of layers

### Create a profile to describe coated material









# Create a profile

### Example of Cr/Ni/Brass substrate

- Assign name to the profile
- Select number of layers



| Edit I<br>Cr/N | Edit Profile Name:<br>Cr/Ni/Brass |   |         |   |                  |  |  |
|----------------|-----------------------------------|---|---------|---|------------------|--|--|
| а              | b                                 | с | d       | е | f                |  |  |
| g              | h                                 | i | j       | k | Ι                |  |  |
| m              | n                                 | 0 | р       | q | r                |  |  |
| S              | t                                 | u | v       | w | х                |  |  |
| Û              | @                                 | , |         | у | z                |  |  |
| ×              | ē                                 |   | <b></b> |   | $\checkmark_{t}$ |  |  |

**Enter Profile Name** 



# Select the number of layers (up to 4)

# Define sequence and nature of layers

- Layer 1: the closest to the substrate, layer with highest # (up to 4) at the surface
- Select layer material
- Density of the layer (default value of pure metal or alloy) can be edited in case an element is mixed with some compound
- Slope of the layer can be adjusted to match values of available reference samples



### Select layer to edit



### Layer Edit



#### Thermo Fisher SCIENTIFIC

# Selection of layer material

# Layers: pure elements. Ni, Cr

| ←     | Material Type | ((t- |  |
|-------|---------------|------|--|
| Elerr | nent          |      |  |
| Alloy |               |      |  |
|       |               |      |  |
|       |               |      |  |
|       |               |      |  |
|       |               |      |  |

### Select among list







# Define the material of the substrate



# Review of the profile, analysis of sample



### Results of analysis 2 µm Cr foil/ 10µmNi Foil/ C464 substrate

| ← Cr/N    | li/Brass | (()      |
|-----------|----------|----------|
| #364 10.7 | 7 sec    | <b>%</b> |
| Layer     | μm       | ±2σ      |
| 2: Cr     | 2.21     | 0.01     |
| 1: Ni     | 9.19     | 0.05     |
| C464N     | avBs Si  | ubstrate |
|           |          |          |
|           |          |          |
|           |          |          |
|           |          |          |
|           |          |          |
|           |          |          |

### Result "Out of the Box"



# Measurement units

- Layer Thickness: Ang, µm, mm, µi, mils, thou
- Coat Weight: μg/cm2 g/m<sup>2</sup>, mg/m<sup>2</sup>, g/cm<sup>2</sup>, mg/cm<sup>2</sup>, g/ft<sup>2</sup>, mg/ft<sup>2</sup>, μg/ft<sup>2</sup>, oz/ft<sup>2</sup>
- Coat weight mostly used when coating material is not pure metal but compound (metal passivation, etc.)



#### Selectable units



### Analyzing up to 4 layers

2µmCr/10µmNi/1.5µmCu/ 6.3µmZn/Fe substrate

| ← test   |       | ((ر-<br>۱ |
|----------|-------|-----------|
| #373 9.5 | sec   | <b>.</b>  |
| Layer    | μm    | ±2σ       |
| 4: Cr    | 2.35  | 0.01      |
| 3: Ni    | 11.06 | 0.08      |
| 2: Cu    | 1.49  | 0.03      |
| 1: Zn    | 6.12  | 0.16      |
| Fe       | S     | ubstrate  |
|          |       |           |
|          |       |           |
|          |       |           |

# Analyzing multiple layers over **Plastics**

Common decorative coating

| ← Cr/Ni/      | ′Cu/plastic | ()<br>() |  |  |  |  |  |
|---------------|-------------|----------|--|--|--|--|--|
| #535 16.8 sec |             |          |  |  |  |  |  |
| Layer         | μm          | ±2σ      |  |  |  |  |  |
| 3: Cr         | 0.15        | 0.00     |  |  |  |  |  |
| 2: Ni         | 17.57       | 0.11     |  |  |  |  |  |
| 1: Cu         | 17.01       | 0.35     |  |  |  |  |  |
| Plastic       | Su          | bstrate  |  |  |  |  |  |
|               |             |          |  |  |  |  |  |
|               |             |          |  |  |  |  |  |
|               |             |          |  |  |  |  |  |
|               |             |          |  |  |  |  |  |
|               |             |          |  |  |  |  |  |

### Analyzing thin layers

Passivation coating 38mg/m2 Zr/HDG

| ← z    | ← Zr HDG |           |  |  |  |  |
|--------|----------|-----------|--|--|--|--|
| #564 4 | .3 sec   | 3         |  |  |  |  |
| Layer  | mg/m²    | ±2σ       |  |  |  |  |
| 2: Zr  | 40.24    | 5.26      |  |  |  |  |
| 1: Zn  | 82723.41 | 478.14    |  |  |  |  |
| Fe     |          | Substrate |  |  |  |  |
|        |          |           |  |  |  |  |
|        |          |           |  |  |  |  |
|        |          |           |  |  |  |  |
|        |          |           |  |  |  |  |
|        |          |           |  |  |  |  |

## Accurate Determination of Multilayer Coat Weight & Thickness



# Capabilities of coatings Mode. Alloy substrates

### **Determination of Ni Monolayers over Stainless steel**

10µm Ni/ SS 304



SS-304: Cr:17.9%, Ni:8.36%, Mn:1.6%, Mo:0.29%, Fe:Bal

10µm Ni/SS 316



SS-316: Cr:16.7%, Ni:10.2%, Mn:1.6%, Mo:2.14%, Fe:Bal

#### 10µm Ni/SS 310



SS-310: Cr:24.9%, Ni:19.7%, Mn:1.6%, Mo:0.39%, Fe:Bal

# Accurate determination of layer thickness over alloy substrates containing the same element



# Capabilities of coatings Mode. Alloy as a layer

### Determination of Alloy layers over pure elements and alloys

#### 10.14µm NiZn/ Fe



NiZn: Ni:6% Zn:94%

8.0 µm NiP/Cu



Electroless Ni plating NiP: 88%Ni 12%P

20 µm NiP/Kovar



Electroless Ni plating NiP: 92%Ni 8%P Kovar: 29%Ni%,17%Co, Bal Fe

# Accurate determination of thickness of alloy layers over pure metals or alloys substrates



# **Standardization**

- Check Standardization on next reading, enter # of standards (max.5)
- When prompted, enter reference value for each standard
- Perform the measurement
- After last measurement, linear correction is calculated and applied





OK

±2σ

0.04

# Pseudo Layers: compounds as coating

# Define Pseudo Layer as function of existing layers



### Example P as P2O5/ Galvanized steel

#### 340mg/m2 P2O5/Galvanized

| ← р         | hosphate | ((0      |
|-------------|----------|----------|
| #425 1      | 7.0 sec  | <b>.</b> |
| Layer       | mg/m²    | ±2σ      |
| 2: P        | 163.54   | 4.10     |
| 1: Zn       | 41609.93 | 161.32   |
| Fe          | S        | ubstrate |
| Pseudo Laye | ers      |          |
| P2O5        | 374.51   |          |
|             |          |          |
|             |          |          |
|             |          |          |
|             |          |          |

### **Determination of Compounds Coat Weight**



# Infinite Thickness – Saturation

### 50µm Ni /Cu substrate





T: Tube D: Detector

### Saturation: no signal increase at increasing thickness



# Infinite Thickness – Buried Layer

### 15µm Zn/20µmNi/2µmCr/AA6063

| ← Zn/   | 'Ni/Cr/AA60 | 63 🛜 🕇    |
|---------|-------------|-----------|
| #393 13 | .1 sec      | <b>.</b>  |
| Layer   | μm          | ±2σ       |
| 3: Zn   | 14.88       | 0.46      |
| 2: Ni   | 18.77       | 2.86      |
| 1: Cr   | Buried      |           |
| AA 60   | )63         | Substrate |
|         |             |           |
|         |             |           |
|         |             |           |
|         |             |           |
|         |             |           |



T: Tube D: Detector

# Buried layer: signal from substrate & deep layer(s) not detected



# Infinite Thickness – examples

#### Calculated values of infinite thicknesses (80% absorption) for different coating/substrate

| Coating | Substrato | Infinite thickness of the | Infinite thickness of the coating |
|---------|-----------|---------------------------|-----------------------------------|
| Coating | Substrate | coating element (µm).     | for the substrate element (µm)    |
| Ag      | Cu        | 59                        | 6.0                               |
| Au      | Ni        | 8.0                       | 2.9                               |
| Au      | Cu        | 8.0                       | 3.5                               |
| Cd      | Fe        | 73                        | 4.0                               |
| Cr      | Fe        | 22                        | 4.0                               |
| Cr      | Ni        | 22                        | 6.2                               |
| Cu      | AI        | 29                        | 0.3                               |
| Cu      | ABS       | 29                        | N/A                               |
| Ni      | AI        | 26                        | 0.4                               |
| Ni      | Cu        | 26                        | 31                                |
| Ni      | Fe        | 26                        | 17                                |
| Pb      | Cu        | 22                        | 7.7                               |
| Pd      | Ni        | 51                        | 4.7                               |
| Rh      | Cu        | 48                        | 5.8                               |
| Sn      | AI        | 89                        | 0.6                               |
| Sn      | Cu        | 89                        | 7.5                               |
| Ti      | Fe        | 28                        | 8.7                               |
| Zn      | Fe        | 39                        | 18                                |
| Zr      | AI        | 79                        | 1.3                               |

