Conductivity / Resistivity Sensor Instruction Sheet #### Conductivity/Resistivity Cell Simple conductivity sensors are constructed of an insulating material imbedded with graphite, platinum, stainless steel or other metallic pieces. These metal contacts serve as sensing elements and are placed at a fixed distance apart to make contact with a solution whose conductivity is to be determined. The distance between the sensing elements as well as the surface area of the metallic piece, determine the cell constant, defined as length/area. The cell constant is a critical parameter affecting the conductance value produced by the cell and handled by the electronics circuitry. A cell constant of 1.0 will produce a conductance reading approximately equal to the solution conductivity. For solutions of low conductivity, the sensing electrodes can be placed closer together, reducing the distance between them and producing cell constants of 0.1 or 0.01. This will raise the conductance reading by a factor of 10 to 100. Sensing electrodes can be placed further apart to create cell constants of 10 or 100 for use in highly conductive solutions. This also produces a conductance acceptable to the meter by reducing the conductance reading by a factor of 10 to 100. In order to produce a measuring signal acceptable to the meter, it is highly important that the user chooses a cell with a cell constant appropriate for the sample. The table below lists the optimum conductivity range of cells with different cell constants. | Order Code | Cell constant | Optimum Conductivity Range | Cell Material | |------------|---------------|-------------------------------------|---------------| | CS10-0-01T | 0.01 | 0.055 - 20 μS/cm (Ultra-Pure Water) | Titanium | | CS10-0-01S | 0.01 | 0.055 - 20 μS/cm | SS 316 | | CS10-0-1S | 0.1 | 0.5 - 200 μS/cm | SS 316 | | CS10-1-0S | 1.0 | 0.01 - 200 mS/cm | SS 316 | NB: All above cells have integrated Pt 100 ATC sensor. When used in "Pure Water" applications, select cells with cell constants, k = 0.01, and select in "temperature coefficient" option, "Pure Water Compensation", available in CONCTP1001/2 and RESCTP1001/2. #### Operating Instructions Before use, rinse the cell in 50% Isopropanol to remove oil film. Connect the cell to the meter and follow the meter instruction for standardizing the cell for use at a given temperature. Rinse the cell sensing elements with distilled or deionised water between samples. The cell constant may change slightly with use and should be calibrated to the user's meter. #### Cleaning and Storage The single most important requirement of accurate and reproducible results in conductivity measurements is a clean cell. A dirty cell will contaminate the solution and cause the conductivity to change. Grease, oil, fingerprints, and other contaminants on the sensing elements can cause erroneous measurements and sporadic responses. Clean cells with detergent and / or dilute nitric acid (1%) by dipping or filling the cell with cleaning solution and agitating for two or three minutes. Other diluted acids (e.g. sulfuric, hydrochloric, chromic) may be used for cleaning except for aqua regia. When a stronger cleaning solution is required, try concentrated hydrochloric acid mixed with 50% Isopropanol. Rinse the cell several times with distilled or deionised water and re-calibrate with meter. ### Conductivity/Resistivity of Various Aqueous Solutions at 25°C | Conductivity Resistivity | | |--|---| | 0.05 μS/cm | 18 MΩ-cm | | 0.05 – 1 μS/cm | 1-18 MΩ-cm | | 0.5 μS/cm | 2 MΩ-cm | | 0.1 - 10 μS/cm | 0.1 – 10MΩ-cm | | 1 – 80 μS/cm | 0.01 – 1 MΩ-cm | | 10 μS/cm | 0.1 MΩ-cm | | 0.5 - 1 mS/cm | 1- 2 kΩ-cm | | 0.9 - 9 mS/cm | 0.1 – 1 kΩ-cm | | 1.4 mS/cm | 0.7 kΩ-cm | | 1.5 mS/cm | 0.1 kΩ-cm | | 1 - 80 mS/cm | 0.01 – 1 kΩ-cm | | 7 – 140 mS/cm | rarely stated | | 53 mS/cm | rarely stated | | 355 mS/cm | rarely stated | | 865 mS/cm | rarely stated | | ׅ֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜ | 0.05 μS/cm 0.05 – 1 μS/cm 0.5 μS/cm 0.1 – 10 μS/cm 1 – 80 μS/cm 10 μS/cm 0.5 – 1 mS/cm 0.9 – 9 mS/cm 1.4 mS/cm 1.5 mS/cm 1 – 80 mS/cm 7 – 140 mS/cm 355 mS/cm | # Wiring Diagram for Eutech Instruments Conductivity/Resistivity cells **Technical Dimension of Cells** Typical Installation of Conductivity Electrode in In-Line Applications