

Explore the future

ELECTRODES & ACCESSORIES

●pH(ORP) ●ION ●CONDUCTIVITY ●DO

CONTENTS

ELECTRODE SELECTION GUIDE, pH METER and ELECTRODE COMBINATION TABLE 2	2
NEW ELECTORODES (pH ELECTORODES)·························3	3
pH ELECTRODES (GLASS ELECTRODES)	
ph electorodes (reference electrodes) & Temperature compensation electrodes	;
pH ELECTRODES (3-in-1 ELECTRODES)	,
ph electrodes (combination), METALLIC ELECTRODES (FOR ORP MEASUREMENT) & ISFET ELECTRODES	,
STANDARD SOLUTIONS, INTERNAL SOLUTION for REFERENCE ELECTRODE & CLEANING SOLUTIONS	}
ION ELECTRODES 9)
CONDUCTIVITY ELECTRODE CELLS 12	<u>-</u>
DO ELECTRODES & DO ELECTRODE TIPS 13	}
ACCESSORIES 14	-
ELECTRODES & ACCESSORIES for TWIN/CARDY, ACCESSORIES for U-10, U-20XD/W-20XD SERIES & INTERNAL SOLUTION for REFERENCE ELECTRODE······· 15	;
Earlier models pH ELECTRODES / METALLIC ELECTRODES / CONDUCTIVITY ELECTRODES / ACCESSORIES · · · · · · · · · 16	-

ph electrodes Metallic electrodes ION electrodes Conductivity electrodes Do electrodes Accessories

■ Applicable Product Models F-50 Series, F-20 I Series, F-20 Series, pH Meter F-10 Series, M-10 Series Portable pH Meter D-50 Series, D-20 Series, D-10 Series [Compact] **pH Meter** B-111/112, B-211/212 Conductivity Meter DS-10 Series, DS-50 Series ES-10 Series, ES-51 Portable Conductivity Meter B-173 Compact Conductivity Meter Compact lon Meter C-121, C-122, C-131, C-141 Portable DO Meter OM-10 Series, OM-51 Water Quality U-20XD/W-20XD Series **Monitoring System**

ELECTRODE SELECTION GUIDE

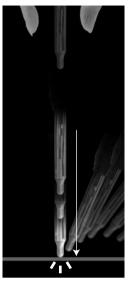
		Tempera	tion Electro ture Comp	ensation S						Tempera	tion Electro	ensation S	ensors	Discrete Electrode	s		Discrete	e Electrod Electrodes		
		9621-10D	9611-10D	9669-10D	9677-10D		6377-10D	6378-10D	6252-10D	6066-10C	6069-10C	6251-10C	6261-10C	1066A-10C	1076A-10C	6961-15C	2565A-10T			
		pHast	ToupH	Micro	High viscosity	High accuracy	Non- aqueous	Test tubes	For Food Applications		Slender test tubes	Needle	Flat	Standard	Non- aqueous	Distribution	Double	Distribution	Standard	Sleeve
	For school use		0																	
	For outdoor use	0																		
By Shape		0	0	0	0	0	0	<u> </u>		0	0			0	0		0		0	0
	Test tube			0				0			Q									
	NMR tube	×	×	×	×	×	×	×	×	×	0	×	×	×	×	×	×	×	×	×
	Trace sample			0							0		0							
	Beaker	0	0	0	0	0	0	0		0	0			0	0		0		0	0
	Solid (surface measurement)	×	×	×	X	×	×	×	×	×	×	×	0	×	×	×	×	×	×	×
	Flow-through	×	×	×	X	×	X	X	X	×	×	×	×	×	×		×	0		
Ву	Strong alkalinity (pH12-10)														0		0			
Condition	Strong acidity (pH0-2)		0		0									0	0		0			
	High temperature (60-100°C)	0													0		0		0	0
	Drastic thermal change	0																		
	Low ionic strength	0					0								0		0			0
	Non-aqueous solution														0		0			0
	High viscosity				0									0	0		0			
	KCI-reactive solution														0		0			
Food	Beer				0		0								0		0			
Sample	Milk	0	0		0	0	Ô			0				0	Ô		0			
	Yogurt				Ō	Ō	Ō							Ō	Ō		Ō			
	Fruit juice		0		0		0							0	0		0			
	Konjak (Devil's tongue)						T -					0								
	Meat, fish								Õ			Õ								
	Emulsion								Ť					0	0		0			
	Honey													Ŏ	Ŏ		Ŏ			
	Bread								0			0		- ĭ			-			
Chemicals		×				 			 					0			0			
	Surfactant	_ ^`	0				Ĭŏ							ŏ	ŏ		ŏ			
	Suspension	l					ŏ			†				ŏ	ŏ		ŏ			
	Paint	×					Ĭŏ							ŏ	ŏ		ŏ			
	Photo developer	X	×	×	×	X	×	X	×	×	×	×	×		ŏ	×	Ŏ	×	×	×
	Organic solvent	×	 ^	<u> </u>	+ ^	 ^	 ^	+^-	+^-	 ^	_^_		<u> </u>	—	\vdash	<u> </u>	\vdash	 ^	 ^	_^_
	Liquid fertilizer	├^		1						 	1	1		 						
Bio-	Dialysis	 	-	1		_	×	_	_		_	†		 		_	0		<u> </u>	
	TRIS buffer	l		 			 ^			-	 	1		0	8		0			
	Skin	×	×	×	×	×	×	×	×	×	×	×	0	l ×	×	×	×	×	×	×
	Swimming pool	-	^	 ^	 	 	1 6	 	+^-	 ^-	+^-	 ^-	\vdash	 ^	- 	 ^-	-	 ^-	 ^-	 ^-
	Sea water	<u> </u>	 	1	1 8	 	1 8	1 8	+			1			 		0			
		_ ~	Η 9	-	+ -	Η _	_ ~	\vdash	-	-	1	-			 		0			
	Acid rain	0	-	-	-	-	-	+	+	-	-	_	-	0	\vdash	-				
	Soil			1		-	 _ _ _ _ _ 	-	0	-	1	0		-	<u> </u>					
	Tap water	0	-	-	-	-		+	+		-	1	-	-	0		0		-	-
	Ion-exchanged water	0					0	of domo						L		1				

PH METER and ELECTRODE COMBINATION TABLE

			pН			OF	RP.	IO	N	Conductivity	
	3-in-1 Electrode	Combination Electrode	Cordless Electrode	Single Electrode*1	Reference Electrode	3-in-1 Combination Electrode	Single Electrode*1	Combination Electrode	Single Electrode*1	Electrode Cells	DO Electrode
	9611-10D	6066-10C	6330	1066A-10C	2060A-10T	9300-10D	3060-10C	6560-10C	8001-10C	9382-10D	9520-10D
	9621-10D	6069-10C	6336	1076A-10C	2660A-10T			6561-10C	8002-10C		9551-20D
	9669-10D	6069MP-10C		6961-10C	2565A-10T	6861-10C		5002A-10C	8003-10C	3551-10D	9551-100D
	9667-10D	6251-10C			2461A-10T			6581-10C	8004-10C	3552-10D	9550-20D
		6261-10C						6582-10C	8005-10C	3553-10D	9550-100D
	6366-10D							6583-10C	8006-10C	3561-10D	
	6367-10D								8007-10C	3562-10D	
	6377-10D								8008-10C	3573-10D	
	6378-10D								8009-10C	3574-10D	
	6252-10D								8010-10C		
									8011-10C		
									1512A-10C		
									8201-10C		
									8202-10C		
Туре									8203-10C		
F-51 • 52	0	0	×	0	0	0	0	×	×	×	X
F-53	0	0	×	0	0	0	0	0	0	×	×
F-54	0	0	×	0	0	0	0	×	×	0	×
F-55	0	0	×	0	0	0	0	0	0	0	×
D-51, D-21	0	0	×	×	X	×	X	×	X	×	×
D-52, D-22	0	0	×	×	×	0	×	×	×	×	×
D-53, D-23	0	0	×	×	×	0	×	0	×	×	×
D-54, D-24	0	0	×	×	X	0	X	×	×	0	×
D-55, D-25	0	0	×	×	X	0	X	×	×	×	0
F-21 • 22 • 21 II • 22 II	0	0	×	0	0	0	0	×	×	×	×
F-22C • 22 II C	0	0	0	0	0	0	0	×	×	×	×
F-23 • 24 • 23 II • 24 II	0	0	×	0	0	0	0	0	0	×	×
F-23C • 24C • 23 II C • 24 II C	0	0	0	0	0	0	0	0	0	×	X
M-11, F-11 • 12	0	○*2	×	○*2	○*2	X	X	×	×	×	×
M-12 • 13, F-13 • 14 • 15 • 16	0	0	×	0	0	0	0	×	×	×	×
D-11 • 12	0	○*2	×	×	×	×	×	×	×	×	×
D-13 • 14	0	○*2	×	×	×	0	X	×	×	×	×

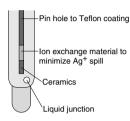
^{○:} Applicable X: Not applicable

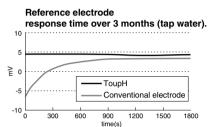
^{○:} Recommended X: Prohibited or risk of damage


NEW ELECTORODES (pH ELECTORODES)

"ToupH Electrode" More impact-resistant and unbreakable

The response glass in conventional electrodes had to be thin to keep electric resistance low and sensitivity high. The new ToupH electrode uses glass of lower electric resistance, resulting in a relatively thicker and substantially tougher response glass — especially at the tip — while improving sensitivity and response.





"Silver Ion Trap" Clogging-resistant liquid junction and faster response time

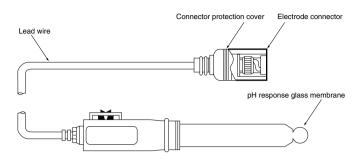
The silver/silver chloride internal electrode in the reference electrode is known to cause silver clogging at the liquid junction and to react with the sample, which can affect the reproducibility and response time. The silver ion trap in the new electrode suppresses the outflow of silver ions, thereby minimizing clogging at the liquid junction and ensuring more stable measurement. The new design also minimizes sample deterioration by silver.

3-in-1 Electrode (Waterproof, Silver Ion Trap Construction)

· •	,		•		,
Туре	Applicable temperature range(°C)	pH range	Liquid junction	Internal solution	Feature
9611-10D Thick membrane electrode ToupH 9096001800 150	0-80	0-14	Ceramic	#300 (KCI)	More impact-resistant and easier to clean, the thick glass membrane realizes rapid response while minimizing clogging at the liquid junction and ensuring stable measurements. For all lab needs. (Post-9610-10D model)
9621-10D Plastic-body electrode 9096001700 150	0-100 (Submerged measurements: 0-50)	0-14	Ceramic	#300 (KCI)	Cased in a plastic body to enable field measurements. The slide-type internal solution filler permits submerged measurements in depths up to 1m (for up to 30 minutes). The glass membrane, which offers excellent response to low-conductivity water, and the clog-resistant liquid junction design make this model ideal for both tap water and pure water measurements. (Post-9620-10D model)
9677-10D Sleeve electrode for slurry samples ToupH 9096002000 150	0-60	0-14	Movable sleeve	#300 (KCI)	More break-resistant thick glass membrane. The movable sleeve allows easy cleaning of the liquid junction and replacement of the internal solution. Ideal for measuring samples of high viscosity.
9669-10D Micro electrode for trace amount samples 10 10 10 10 10 10 10 10 10 10 10 10 10	0-60	0-14	Ceramic	#300 (KCI)	Micro-electrode with a built-in temperature sensor for trace sample measurements (0.3mL). The highly responsive temperature sensor and the clog-resistant liquid junction design assure stable measurements.

<Reference>

The liquid junction is the section where the liquid inside the reference electrode comes in contact with the sample liquid. Several junction types are available (ceramic, sleeve, etc.), to meet the requirements of specific samples or applications.


Liquid junction type	Features
Ceramic	A broad range of pH measurements. (Please note that samples of high viscosity may cause clogging.)
Movable sleeve	The larger liquid junction area is ideal for samples of high liquid junction potential, such as those with (1) high viscosity, (2) high salt concentration, or (3) low ionic strength. The liquid junction is easy to clean. High internal solution outflow volume.
Fixed sleeve	The large liquid junction area makes this type somewhat similar to the movable sleeve type. Not recommended for samples of high viscosity, as the sleeve cannot be cleaned.
Double junction	Combination of the ceramic type and the movable sleeve type overcomes the disadvantages of using either separately. When the outflow of the KCl in the internal solution presents a problem, placing the sample or other salt solution in the external tube will ensure stable measurements.

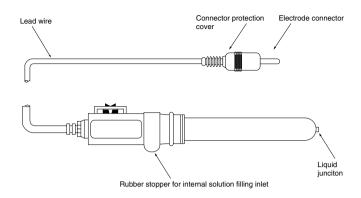
PH ELECTRODES (GLASS ELECTRODES)

Glass electrodes measure the pH value in the sample solution by detection of electromotive force, i.e., voltage.

HORIBA's superior glass electrodes have all the qualities required for accurate measurement and testing: they are responsive to changes in electromotive force, sensitive to very slight alkaline differences, have a low internal resistance, and are extremely durable. HORIBA's electrodes are perfect not only for laboratory pH measurement conditions, but are in widespread general use for pH measurement.

Our series of electrodes for use with HORIBA's F, M, & D Series of pH meters incorporate a composite lithium glass for the pH-responsive glass membrane. This gives them extremely high sensitivity. They connect to the industry-standard universal BNC connectors. The holder portion has a squared-off design to prevent the electrode from rolling, protecting it from damage.

Glass Electrodes


Туре	Usage	Applicable temperature range(°C)	pH range	Applicable reference electrode	Feature
1066A-10C Standard type NORIBA 150 9003012200	Glass electrode 1066A-10C	0-100	0-14	2060A 2660A 2565A	Very durable minimum alkali errors. Most widely used for general pH measurements.
1076A-10C For measurement of low-conductivity water and non-aqueous solvents.	Glass electrode 1078A-10C	0-100	0-14	2060A 2660A 2565A	Uses a glass membrane highly sensitive to low-conductivity water and non-aqueous solvents. Can also be used for ordinary pH measurement.
6961-15C Small sample amount flow type	Reference electrode 2461A-15T	0-50	0-12	2461A	A glass electrode with a pH response membrane like a slender tube. Becomes a combination pH electrode of small sample amount flow type when combined with the reference electrode 2461A-15T by providing a pinhole liquid junction in the slender tube. (Allows a small amount of sample to be measured while it is distributed.)

Electrode connector and lead wire length:

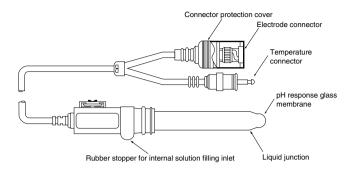
10 of -10C, -10T, or -10D in the last part of each type shows that the lead wire length is 1.0m. C, T, and D denote connector types for the main unit. The connector type suited for the main unit should be selected. Can be connected to the D connector on the D series or to the C, T, or D connector on the standard F series and M series of popular HORIBA pH meters.

ph electorodes (reference electrodes) & TEMPERATURE COMPENSATION ELECTRODES

Reference electrodes constitute part of the detection portion of pH meters; they are used together with a glass electrode to isolate the electromotive force generated in the glass electrode. HORIBA's reference electrodes use a top-quality internal reference electrode and a liquid junction with numerous special features; this gives them an incredible stable indication of electrical potential, making them particularly suitable as reference electrodes in all types of pH and electrical potential measurement. These electrodes have a double-junction configuration, incorporating two types of liquid junction, using capillary tubes, a sleeve with large surface area, and an easy-to-use ceramic filter.

Reference Electrodes

Туре	Applicable temperature range(°C)	Liquid junction	Internal solution	Applicable glass electrode	Feature
2060A-10T Standard type No. 150 9003012500	0-100	Ceramic	#300 (KCI)	1066A 1076A	Suitable for a wide range of pH measurements since the resistance of the liquid junciton is small.
2660A-10T Sleeve type No. 150 150 164 150	0-100	Sleeve	#300 (KCI)	1066A 1076A	Particularly suitable for measurements of suspensions, emulsions, paste, and non-aqueous solutions since the resistance of the liquid junction is small. The cleaning of the liquid junction and the replacement of the internal solution can be carried out easily.
2565A-10T Double-junciton type yo 64 9003012700	0-100	Intermediate: Ceramic External: Sleeve	#300 (KCI)	1066A 1076A	Suitable for measurements of liquid other than normal aqueous solutions, such as suspensions, emulsions, paste, and non-aqueous solutions. When the potassium chloride solution of the internal solution reacts with the sample, measurements can be stably carried out by filling the sample or any other chloride solution in the external jacket. The replacement of the internal solution and the cleaning of the liquid junction can be carried out easily.
2461A-15T For small sample amount flow Salt bridge Note: 150 9003012800	0-50	Salt Bridge	#300 (KCI)	6961	Connected to the electrode 6961-15C for very small sample amounts when used.


Temperature Compensation Electrode

Type	Applicable temperature range(°C)	Applicable	Temperature compensation element	Feature
4163-10T W HORINA BH 64 150	0-100	Temperature compensation and measurement	Thermistor	Used to automatically compensate the changes in the electromotive force of the pH electrode due to temperatures and also to measure temperatures.
9003013000				

ph electrodes (3-in-1 electrodes)

Combination electrodes are a glass electrode and a reference electrode incorporated into one unit. 3-in-1 electrodes incorporate a glass electrode and a reference electrode-plus a temperature compensation electrode-into a single unit

These electrodes are compact and easy to use; they give superb results in pH measurements over a broad range of sample liquids and test conditions. Also, since the glass membrane and the liquid junction are adjacent, only a small amount of sample fluid is required and they are extremely simple to clean. The internal reference electrode uses a solution of 3.33 mol/L KCI.

3-in-1 Electrode

	Туре	Applicable temperature range(°C)	pH range	Liquid junction	Internal solution	Feature
6366-10D 9003011700	Standard type (ceramic)	0-100	0-14	Ceramic	#300 (KCI)	The most standard pH electrode. (Standard accessory M series and models F-21 I, F-22 I, F-23 I.)
6367-10D 9003011800	Standard type (sleeve)	0-60	0-14	Sleeve	#300 (KCI)	Uses a sleeve for the liquid junction, improving the stability and repeatability. For measuring pH at high accuracy. (Standard accessory for model F-241.)
6377-10D 9003014100	For measurement of low-conductivity water and non-aqueous solvents	0-60	0-14	Movable sleeve	#300 (KCI)	Uses a glass membrane highly sensitive to low-conductivity water and non-aqueous solvents. Movable sleeve used at the liquid junction.
6378-10D \$\times_{\text{1}}^{\text{13}}\$ \$\times_{\text{1}}^{\text{1}}\$ 9003011900	For test tubes	0-60	0-14	Ceramic	#300 (KCI)	Can be used not only for general purposes, but also for measuring pH of a small amount of sample in a long, slender container such as a test tube.
6252-10D 9003013800	For food application (needle type)	0-60	0-12	Ceramic	#300 (KCI)	Needle electrode allows measurement of aqueous solutions too.

3-in-1 Electrode (Cordless Electrode*)

* Marketed only for Japanese and U.S. market.

Туре	Applicable temperature range(°C)	pH range	Liquid junction	Internal solution	Feature
6330 Plastic body type 9003014300 Plastic body type 160 7	0-80	0-14	Ceramic	#300 (KCI)	Cordless electrode with plastic body(standard accessory for models F-22\(\text{IC}\), F-23\(\text{IC}\), F-24\(\text{IC}\)).
6336 Standard type 2 164 160 7	0-80	0-14	Ceramic	#300 (KCI)	Special cordless electrode with glass body.

Combination Electrodes

Туре	Applicable temperature range(°C)	pH range	Liquid junction	Internal solution	Feature
6066-10C Standard type					
9003013400	0-100	0-14	Ceramic	#300 (KCI)	A combination electrode incorporating a glass electrode and a reference electrode into single unit, which allows pH values to be measured easily.
6069-10C For very slender test tubes					For measuring pH of a small amount of sample in a
9003013500	0-60	0-14	Ceramic	#310 (KCI with AgCI)	slender tube (more than 3.5 mm dia.) such as a NMR test tube.
6069MP-10C					This alian also trade to consider the first size to a
9003017900	0-60	0-14	Ceramic	#300 (KCI)	This slim electrode \$\phi\$3mm is suitable for biological or pharmaceutical applications, allowing the measurement for the trace amount sample, such as 0.3ml, in a micro tube.
6251-10C Needle type					
9003013600	0-50	0-12	Sleeve	#300 (KCI)	Since its tip is very sharp, this electrode can be directly thrusted into solid samples such as meat, fruits, and animal tissues to measure their pH values.
6261-10C Flat type					Since the pH response membrane and the liquid
64	0-50	0-12	Sleeve	#300 (KCI)	junction are located on the same surface, pH values on the surfaces of skin, leather, paper, and leaves can be measured.
9003013700					

Metallic Electrodes (For ORP Measurement)

•			,		
Туре	Applicable temperature range(°C)	Electrode material	Applicable reference electrode	Internal solution	Feature
6861-10C Platinum combination type 2 12 8 1	0-60	Pt		#300 (KCI)	A combination electrode for measuring oxidation reduction potentials (ORP), which incorporates a metallic electrode and a reference electrode into a single unit. It is the most standard electrode.
3060-10C Platinum single polarity type No. 100 Platinum single polarity type No. 100 Platinum single polarity type	0-60	Pt	2060A 2660A 2565A		Used for an indication electrode in measurements of oxidation-reduction potentials.
9300-10D Waterproof platinum combination type	0-60	Pt		#300 (KCI)	Waterpoof. Uses a flat type metallic electrode, which allows a small amount of sample to be measured.

ISFET Electrode

Туре	Applicable temperature range(°C)	pH range	Liquid junction material	Feature
0030-10D Needle type	0-60	0-14	ABS, epoxy, polyethylene, Ta₂O₅, platinum	Ideal for food processing and other applications where glass is prohibited, and as well as for penetration measurements in soil.

STANDARD SOLUTIONS, INTERNAL SOLUTION for REFERENCE ELECTRODE & CLEANING SOLUTIONS

pH Standard Solution SET (accuracy: ±0.02 pH)

Туре		Name	pH value(25°C)	Volume(mL)	Remarks
		Phosphate standard equimolal solution	6.86	500	
101-S	1-S 9003003500 ⊢	Phthalate standard solution	4.01	250	Use undiluted. The set contains standard and internal
		Borate standard solution	9.18	250	solutions, as shown.
		Internal Solution for Reference Electrode (300)		250	

pH Standard Solution (accuracy: ±0.02 pH)

	Type		Name	pH value(25°C)	Volume(mL)	Remarks
1000	100-2	9003001500	Oxalate standard solution	1.68	500	
100	100-4	9003001600	Phthalate standard solution	4.01	500	The original solution should be used as it is. For general use as standard solution
	100-7	9003001700	Phosphate standard equimolal solution	6.86	500	sets, 101-S (100-4.7.9 and #310 internal solution) are also available.
2:25	100-9	9003001800	Borate standard solution	9.18	500	Solution) are also available.
3	100-10	9003001900	Carbonate standard solution	10.02	500	

Condensed pH Standard Solution (accuracy: ±0.02 pH)

	Type		Name	pH value(25°C)	Volume(mL)	Remarks
	110-4	9003002300	Condensed phthalate standard solution	4.01	500	Should be diluted when used. The pH
2187	110-7	9003002400	Condensed phosphate standard equimolal solution	6.86	500	values shown are those obtained when the original solution is diluted with pure water
	110-10	9003002500	Condensed carbonate standard solution	10.02	500	at a volume ratio of 1 to 4. For general use.

Standard Solution for Accurate Measurements (N.B.S., accuracy: ±0.003 pH)

	Type	Nama	pH value		Volumo(ml.)	Remarks
	Туре	Name		37°C	Volume(mL)	
D7€ B9€	100-B4 9003002000	Phthalate standard solution	4.008	4.030	500	The original solution should be used as it is. This standard solution is for very
B45 B75 B95	100-B7 9003002100	Phosphate standard solution	7.413	7.383		accurate measurements based on N.B.S.
	100-B9 9003002200	Borate standard solution	9.180	9.082	500	The pH values shown do not necessaril match with those shown in JIS.

Powder for pH Standard Solution (accuracy: ±0.05 pH)

	Туре		Name	pH value(25°C)	Remarks
1	150-4	9003002700	Powder for phthalate standard solution	4.01	The pH value shown are those obtained when one packet
	150-7	9003002800	Powder for neutral phosphate standard solution	6.86	is dissolved in 500 ml of pure water. One packet contains powder for 500 mL.
150	150-9	9003002900	Powder for borate standard solution	9.18	For use in field at factories (10 packets per set)

Powder for ORP Standard Solution (accuracy: ±15 mV)

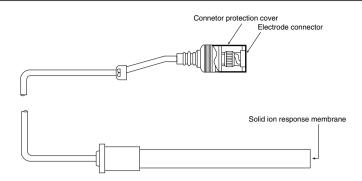
	Туре		Name	ORP value(25°C)	Remarks
夏回	160-51	9003003100	Powder for ORP standard solution		The ORP values shown are those obtained when one packet is dissolved in 250 mL of pure water. This standard all this packet is the standard of the standard in
- T	160-22	9003003000	Powder for ORP standard solution		standard solution should be used immediately after conditioning and can-not be used for 2 hours or more. (10 packets per set)

Note: The pH standard solution by a reliable manufacturer should be selected because they are used as reference for pH measurements. It is recommended for safety not to use the standard liquid which was allowed to stand for long bours after opening its bottle or which was once used.

Internal Solution for Reference Electrode

Туре		Name	Concentration	Volume(mL)	Remarks	
88	300	9003003200	For 6327, 6328, F, M, and D-10 series electrodes	3.33 mol/L KCI	250	The original solution should be used as it is. Powder for internal solution (350) is also available for a large amount of
	310 90030	9003003300	For H-7 and old type pH meter electrodes	3.33 mol/L KCI (AgCI, saturation in normal temp.)	250	internal solution. (The powder is used by dissolving it in pure water.)

Powder for Internal Solution for Reference Electrode


Туре	Remarks
350 9003003400	500g. Dissolve in 2L of pure water.

Electrode Cleaning Solution

Туре	Name	Volume(mL)	Composition	Remarks
220 9096002500	Electrode cleaning solution	50 x 2 pcs	Hydrochloric acid 1% Thiourea 10%	For removing inorganic sample residues from glass electrodes, and for cleaning liquid junctions

lon-selective electrodes are responsive to concentration of particular ions in the test liquid and are variable-potential electrodes. They are used in conjunction with reference electrodes to measure the concentration of particular ions. HORIBAs years of experience and know-how in this field are behind the wide range of ion electrodes we offer.

When measurements are made using an ion meter, by calibrating with various standard solutions, direct readings of the concentration of the ion in question can be taken. Note that since volume-detection level changes with temperature, measurements must be taken at a fixed temperture.

①: Measuring range ②: pH range ③: Applicable temperature range ④: Response time (90%)

Туре	Measuring range	Applicable reference electrode	Selection coefficient
Cyanide ion electrode 8001-10C	①: 0.03 to 2,600 mg/L CN ⁻ (10 ⁻⁶ to 10 ⁻¹ mol/L CN ⁻) ②: 2.6 mg/L (10 ⁻⁴ mol/L) CN ⁻ pH 12 to 13 ③: 0 to 50°C ④: Within 10 seconds	2060A, 2565A	S^{2^-} , $MnO_4^- = Not$ acceptable $I^- = 0.1$ $S_2O_3^{2^-} = 1$
Chloride ion electrode (combination) 6560-10C	①: 0.35 to 35,000 mg/L Cl - (10 ⁻⁵ to 1 mol/L Cl -) ②: 350 mg/L (10 ⁻² mol/L) Cl - pH 3 to 11 ③: 0 to 50°C ④: Within 5 seconds		S ₂ O ₃ ²⁻ , S ²⁻ , I ⁻ , Ag ⁺ , Hg ²⁺ = Not acceptabl SCN ⁻ = 0.3 MnO ₄ ⁻ = 0.1 Br ⁻ = 0.03 NO ₃ ⁻ , F ⁻ , HCO ₃ ⁻ , SO ₄ ²⁻ , PO ₄ ²⁻ = 1,000
Chloride ion electrode 8002-10C	①: 0.35 to 35,000 mg/L Cl - (10 ⁻⁵ to 1 mol/L Cl -) ②: 350 mg/L (10 ⁻² mol/L) Cl - pH 3 to 11 ③: 0 to 50°C ④: Within 5 seconds	2565A	S ₂ O ₃ ² -, S ² -, I ⁻ , Ag ⁺ , Hg ²⁺ = Not acceptabl SCN ⁻ = 0.3 MnO ₄ ⁻ = 0.1 Br ⁻ = 0.03 NO ₃ ⁻ , F ⁻ , HCO ₃ ⁻ , SO ₄ ²⁻ , PO ₄ ²⁻ = 1,000
Sulfide ion electrode 8003-10C	①: 0.32 to 32,000 mg/L S ²⁻ (10 ⁻⁵ to 1 mol/L S ²⁻) ②: 3.2 mg/L (10 ⁻⁴ mol/L) S ²⁻ pH 12 to 14 ③: 0 to 50°C ④: Within 10 seconds	2060A, 2565A	CN ⁻ = Not acceptable S ₂ O ₃ ²⁻ = 10 I ⁻ , F ⁻ , Cl ⁻ , PO ₄ ²⁻ , SO ₄ ²⁻ = 1,000
lodide ion electrode 8004-10C	①: 0.0127 to 12,700 mg/L I ⁻ (10 ⁻⁷ to 10 ⁻¹ mol/L I ⁻) ②: 1,270 mg/L (10 ⁻² mol/L) I ⁻ pH 2 to 11 ③: 0 to 50°C ④: Within 10 seconds	2060A, 2565A	MnO ₄ ⁻ , S ²⁻ ,CN ⁻ = Not acceptable S ₂ O ₃ ²⁻ = 10 NO ₃ ⁻ = 100 Br ⁻ = 1,000
Bromide ion electrode 8005-10C	①: 0.8 to 80,000 mg/L Br- (10 ⁻⁵ to 1 mol/L Br-) ②: 800 mg/L (10 ⁻² mol/L) Br- pH 1.5 to 11.5 ③: 0 to 50°C ④: Within 5 seconds	2565A	$S_2O_3^{2-}$, I ⁻ , S_2^{2-} , CN^- = Not acceptable MnO ₄ ⁻ = 1 CI ⁻ , PO ₄ ²⁻ = 100 F ⁻ , NO ₃ ⁻ , SO_4^{2-} = 1,000
Copper ion electrode 8006-10C	①: 0.06 to 6,350 mg/L Cu ²⁺ (10 ⁻⁶ to 10 ⁻¹ mol/L Cu ²⁺) ②: 6.35 mg/L (10 ⁻⁴ mol/L) Cu ²⁺ pH 2 to 6 ③: 0 to 50°C ④: Within 10 seconds	2565A	Fe ²⁺ = 0.1 Ni ²⁺ , Na ⁺ = 1,000
Cadmium ion electrode 8007-10C	①: 0.1 to 11,240 mg/L Cd ²⁺ (10 ⁻⁶ to 10 ⁻¹ mol/L Cd ²⁺) ②: 11 mg/L (10 ⁻⁴ mol/L)Cd ²⁺ pH 3 to 8 ③: 0 to 50°C ④: Within 10 seconds	2060A, 2565A	Cu^{2+} , Hg^{2+} , $Ag^+ = Not$ acceptable $Pb^{2+} = 0.1$ $Fe^{3+} = 1$ Cr^{3+} , $Fe^{2+} = 100$ $Ni^{2+} = 1,000$

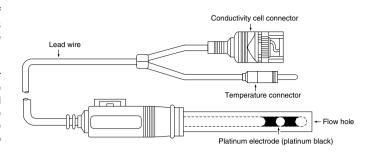
ION ELECTRODES

Туре	Measuring range	Applicable reference electrode	Selection coefficient
Lead ion electrode 8008-10C No. 100 No. 100 N	①:2 to 20,000 mg/L Pb ²⁺ (10 ⁻⁵ to 10 ⁻¹ mol/L Pb ²⁺) ②:20 mg/L (10 ⁻⁴ mol/L)Pb ²⁺ pH 4.5 to 6.5 ③:0 to 50°C ④: Within 10 seconds	2565A	Cu^{2+} , Hg^{2+} , S^{2-} , $Ag^+ = Not$ acceptable $Fe^{3+} = 0.01$ $Cr^{3+} = 1$ $Cd^{2+} = 10$ Ni^{2+} , Mg^{2+} , $Zn^{2+} = 100$ NH_4^+ , $K^+ = 1,000$
Thiocyanate ion electrode 8009-10C 2	①: 0.6 to 5,800 mg/L SCN ⁻ (10 ⁻⁵ to 10 ⁻¹ mol/L SCN ⁻) ②: 5.8 mg/L (10 ⁻⁴ mol/L)SCN ⁻ pH 2 to 12 ③: 0 to 50°C ④: Within 30 seconds	2565A	CN^- , I^- , S^{2^-} , $S_2O_3{}^{2^-}$ = Not acceptable Br^- = 1 CI^- = 100
Fluoride ion electrode (combination) 6561-10C HORIDA 9003014600	①: 0.02 to 19,000 mg/L F ⁻ (10 ⁻⁶ to 1 mol/L F ⁻) ②: 20 mg/L (10 ⁻³ mol/L) F ⁻ pH 4 to 10 ③: 0 to 50°C ④: Within 5 seconds		Possible interference when multiply-charged ion (ex. Al³+, Fe³+) coexisted and foamed the complex.
Fluoride ion electrode 8010-10C	①: 0.02 to 19,000 mg/L F ⁻ (10 ⁻⁶ to 1 mol/L F ⁻) ②: 20 mg/L (10 ⁻³ mol/L) F ⁻ pH 4 to 10 ③: 0 to 50°C ④: Within 5 seconds *1	2060A, 2565A	Possible interference when multiply-charged ion (ex. Al³+, Fe³+) coexisted and foamed the complex.
Silver ion electrode 8011-10C	①: 0.01 to 110,000 mg/L Ag ⁺ (10 ⁻⁷ to 1 mol/L Ag ⁺) ②: 1 mg/L (10 ⁻⁵ mol/L) Ag ⁺ pH 2 to 10 ③: 0 to 50°C ④: Within 10 seconds	2565A	Hg^{2+} = Not acceptable Cu^{2+} , Cd^{2+} , Pb^{2+} , Zn^{2+} , Mg^{2+} , Ca^{2+} , Na^{2+} , K^+ = over 1,000
Ammonia ion electrode (combination) 5002A-10C 9003016600 161	3: 0 to 50°C Within 30 seconds when substituting low concentration to high concentration within 2 minutes when substituting high concentration to low concentration to low concentration		
Sodium ion electrode 1512A-10C HORIBA 135	①: 2.3 to 230,000 mg/L Na+ (10 ⁻⁴ to 10 mol/L Na+) ②: 230 mg/L (10 ⁻² mol/L) Na+ Over pH 4.5 ③: 0 to 60°C ④: Within 30 seconds * 1	2565A	K+, Li+ = 10 NH ₄ += 20 Ca ²⁺ = 500
Nitrate ion electrode (combination) 6581-10C HORBA 9003014700	①: 0.62 to 62,000 mg/L NO ₃ ⁻ (10 ⁻⁵ to 1 mol/L NO ₃ ⁻) ②: 62 mg/L (10 ⁻³ mol/L) NO ₃ ⁻ pH 3 to 7 ③: 0 to 50°C ④: Within 15 seconds **2		$CIO_4^- = 0.03 I^- = 0.1 Br^- = 2$ $NO_2^- = 3 CI^- = 40 F^- = 200$ $CH_3COO^- = 300 SO_4^{2^-} = over 1,000$
Nitrate ion electrode 8201-10C	①: 0.62 to 62,000 mg/L NO ₃ ⁻ (10 ⁻⁵ to 1 mol/L NO ₃ ⁻) ②: 62 mg/L (10 ⁻³ mol/L) NO ₃ ⁻ pH 3 to 7 ③: 0 to 50°C ④: Within 15 seconds *2	2565A	$CIO_4^- = 0.03 I^- = 0.1 Br^- = 2$ $NO_2^- = 3 CI^- = 40 F^- = 200$ $CH_3COO^- = 300 SO_4^{2^-} = over 1,000$
Potassium ion electrode (combination) 6582-10C WHORIDA 9003014800 150	①: 0.04 to 39,000 mg/L K+ (10 ⁻⁶ to 1 mol/L K+) ②: 3.9 mg/L (10 ⁻⁴ mol/L) K+ pH 5 to 11 ③: 0 to 50°C ④: Within 15 seconds *3		Rb ⁺ = 0.4 Cs ⁺ = 3 NH ₄ ⁺ = 70 Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ = over 1,0

Туре	Measuring range	Applicable reference electrode	Selection coefficient
Potassium ion electrode 8202-10C	①: 0.04 to 39,000 mg/L K+ (10 ⁻⁶ to 1 mol/L K+) ②: 3.9 mg/L (10 ⁻⁴ mol/L) K+ pH 5 to 11 ③: 0 to 50°C ④: Within 15 seconds *3	2565A	Rb ⁺ = 0.4 Cs ⁺ = 3 NH ₄ ⁺ = 70 Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ = over 1,000
Calcium ion electrode (combination) 6583-10C	①: 0.4 to 40,080 mg/L Ca ²⁺ (10 ⁻⁵ to 1 mol/L Ca ²⁺) ②: 4.0 mg/L (10 ⁻⁴ mol/L) Ca ²⁺ pH 5 to 11 ③: 0 to 50°C ④: Within 15 seconds **4		$Fe^{3+} = 0.1 Fe^{2+}, Zn^{2+} = 1 Sr^{2+} = 50$ $Ni^{2+}, Cu^{2+} = 70 Co^{2+} = 350$ $Mn^{2+} = 500 Mg^{2+} = 1,000$ $Na^{+}, K^{+}, Ba^{2+}, NH4^{+} = over \ 1,000$
Calcium ion electrode 8203-10C	①: 0.4 to 40,080 mg/L Ca ²⁺ (10 ⁻⁵ to 1 mol/L Ca ²⁺) ②: 4.0 mg/L (10 ⁻⁴ mol/L) Ca ²⁺ pH 5 to 11 ③: 0 to 50°C ④: Within 15 seconds **4	2060A, 2565A	$Fe^{3+} = 0.1 Fe^{2+}, Zn^{2+} = 1 Sr^{2+} = 50$ $Ni^{2+}, Cu^{2+} = 70 Co^{2+} = 350$ $Mn^{2+} = 500 Mg^{2+} = 1,000$ $Na^{+}, K^{+}, Ba^{2+}, NH_{4}^{+} = over \ 1,000$

[•]The response time is the time which is required to reach 90% response when the ion concentration is gradually changed from 10⁻⁴ mol/L to 10⁻² mol/L with the solution stirred. Exception:

- $\pm 1:90\%$ responce when ion concentration is changed to 10^{-6} mol/L $\sim 10^{-2}$ mol/L
- *2:95% responce when ion concentration is changed to 10^{-3} mol/L $\sim 10^{-1}$ mol/L
- *3:95% responce when ion concentration is changed to 10^{-4} mol/L $\sim 10^{-2}$ mol/L
- $\pm4:95\%$ responce when ion concentration is changed to 10^{-4} mol/L $\sim10^{-1}$ mol/L


Cartridges for Ion Sensor Replacement

Туре		Feature
7660 9003015000	Chloride ion cartridge	Replacement electrode tip for combination ion electrodes
7661 9003015100	Fluoride ion cartridge	
7681 9003015200	Nitrate ion cartridge	Replacement electrode tip for combination or
7682 9003015300	Potassium ion cartridge	single electrodes
7683 9003015400	Calcium ion cartridge	
Membrane(NH 9012001000	3)	Membrane set (6 pcs) for NH ₃ electrodes
370 9012000900	Internal solution for NH3 electrodes	Contains 250 mL
O-ring 9012001100		Neoprene ring set (10 pcs) for NH ₃ electrodes (JIS B 2401-P7)

[•]The selection coefficient is a ratio of the limit concentration of coexisting ions (mol/L) to the ion concentration to be measured (mol/L); The value of 1000 means that the coexisting ions can be permitted up to 1000 times the ion measured and "not acceptable" means that chemical change occurs in the solid response membrane.

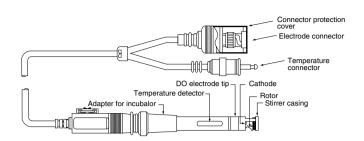
CONDUCTIVITY ELECTRODE CELLS

Conductivity is calculated as the inverse of the resistance R(in ohms) of the sample solution as $\mbox{S/m} = \mbox{V/m}$ between two parallel electrode plates with a surface area of $1\mbox{m}^2$ separated by a distance of $1\mbox{m}$. Since conductivity changes depending on temperature of the sample solution, values are shown at the standard temperature equivalent of $25\mbox{^{\circ}C}$. HORIBA's conductivity electrodes also have a built-in thermistor for temperature measurement, making them perfect for temperature measurement and for obtaining values equivalent to those at the standard $25\mbox{^{\circ}C}$, when used in conjunction with the conductivity meter. Since the conductivity gives valuable information about the ion composition of the sample solution, it is expect that these useful electrodes will continue to find a wide range of applications in the future.

Conductivity Cells (Submersible Type)

(*1) The cell constants are within $\pm 10\%$ of the values shown.

	•		<i>,</i> ,				
	Туре	Cell constant (cm ⁻¹)	Measuring range	Sample amount required (mL)	Temperature compensation element	Applicable temperature range(°C)	Remarks
3551-10D 9056000800	30 175	0.1	0.1 μS/cm to 10mS/cm	50	Incorporated	0-60	For low conductivity water (deionized water or other)
3552-10D 9056000900	N 1 64	1	1 μS/cm to 100 mS/cm	15	Incorporated	0-100	For general purposes (provided as a standard accessory for the DS-10 series)
3553-10D 9056001000	38 64	10	10 μS/cm to 1 S/cm	50	Incorporated	0-60	For high conductivity water
9382-10D 9096000300	150	1	1 μS/cm to 100 mS/cm	20-30	Incorporated	0-80	Waterproof. For general purposes.


Conductivity Cells (Flow Type)

(*1) The cell constants are within $\pm 10\%$ of the values shown.

Туре	Cell constant (cm ⁻¹)	Measuring range	Sample amount required (mL)	Temperature compensation element	Applicable temperature range(°C)	Remarks
3561-10D © 1	0.1	0.1 μS/cm to 10 mS/cm	10	Incorporated	0-60	For low conductivity water (pure water or other)
3562-10D © 1 © 1 0056001200	1	1 μS/cm to 100 mS/cm	16	Incorporated	0-60	For general purposes
3573-10C © 1 81	10	10 μS/cm to 1 S/cm	4	Not provided	0-60	For high conductivity water
3574-10C 012 035 04 05 05 06 05 06 06 06 07 07 07 07 07 07 07 07 07 07 07 07 07	10	10 μS/cm to 100 mS/cm	0.25	Not provided	0-80	For column chromatography using a very small amount of sample

DO ELECTRODES & DO ELECTRODE TIPS

DO Electrodes detect oxygen that diffuses through the oxygen-permeable membrane to determine the amount of dissolved oxygen. The method for measuring dissolved oxygen based on this principle is referred to as the diaphragm electrode method. DO measurement can be carried out much more simply than chemical analysis, which requires complex preparatory procedures to eliminate the effects of deoxidized and oxidized substances. HORIBA's DO electrodes use innovative disposable probe tips. This eliminates the troublesome replacement of membranes and fluid that plagued conventional methods. Each disposable tip comes with its own rotor, so it is not necessary to prepare a separate rotor for each sample. In addition, the electrode has an adaptor for easy use with an incubator in BOD measurement.

DO Electrodes

Туре	Applicable temperature range(°C)	Measuring range	Response time	Feature
5410-10C (For DO-8F) Adapter for incubator, rotor, and stirrer casing	0-45	DO: 0-19.99mg/L O ₂ : 0-50% Temperature: 0-45°C (When used with dissolved oxygen meter DO-8F)	20 seconds (90% response time at constant temperature)	A DO electrode exclusively for DO-8F. This is a disposable chip type electrode (7541), which uses a detachable stirrer and a precision platinum resistance bulb for its temperature measuring element.
9520-10D For laboratories 9096000500 184	0-45	DO: 0-19.99mg/L Temperature: 0-40°C (When used with dissolved D-25)	20 seconds (90% response time at constant temperature)	Waterproof. Uses a thermistor with a disposable ship-type electrode 7541 as the thermometric element.
9551-20D For field immersible type (2 m cable)	0-40	DO: 0-19.99mg/L Temperature: 0-40°C (When used with dissolved D-55, OM-51)	30 seconds (90% response time at constant temperature)	Waterproof. Uses a thermistor with a disposable ship-type electrode 5401 as the thermometric element.
9551-100D For field immersible type (10 m cable)	0-40	DO: 0-19.99mg/L Temperature: 0-40°C (When used with dissolved D-55, OM-51)	30 seconds (90% response time at constant temperature)	Waterproof. Uses a thermistor with a disposable ship-type electrode 5401 as the thermometric element.
9550-20D For field immersible type (2 m cable)	0-40	DO: 0-19.99mg/L Temperature: 0-40°C (When used with dissolved D-25, OM-10 series)	30 seconds (90% response time at constant temperature)	Waterproof. Uses a thermistor with a disposable ship-type electrode 5401 as the thermometric element.
9550-100D For field immersible type (10 m cable)	0-40	DO: 0-19.99mg/L Temperature: 0-40°C (When used with dissolved D-25, OM-10 series)	30 seconds (90% response time at constant temperature)	Waterproof. Uses a thermistor with a disposable ship-type electrode 5401 as the thermometric element.

DO Electrode Tips

•A commercially available stirrer should be used.

	Туре	Remarks
5401 9033010000		A DO electrode chip for replacement. (For the above-mentioned 9551-20D, 9551-100D, 9550-20D, 9550-100D, 5450-20D and 5450-100D)
7541 9074000200	26.5	A DO electrode chip for replacement. (For the above-mentioned 5410-10C, 9520-10D)

ACCESSORIES

For Electrode

Sensor holder		9621 Electrode protector tube (5 units/pack)	Electrode protector cap (5 units/pack)
9003017100		9003012000	9003012100
For attaching an ion electrode or the like with a round electrode cap to the stand arm.	FB	Protects the tip of the 9621-10D electrode. Because the electrode is already encased in a plastic sheath, just slip this protective tube over the tip and your pH meter is ready to for work in the field.	Protects electrodes during storage or transportation.

For 50, 20, 10 Series

Digital simulator X-51		Digital simulator X-52	-9 255
pH, mV, ION, DO simulator (for periodic inspection of the electrode)	686	Conductivity simulator (for periodic inspection of the electrode)	686.

For 50 Series (D-50, F-50, DS-50, ES-50, OM-50 Series)

Printer (for GLP/GMP compliance)	Printer cable	Printer paper	Ink ribbon
9096003500	9096003800	9096003900	9096004000
CBM-910-24RJ100-A	Cable to connect a plain paper printer and a 50-series electrode	20 rolls (for 50-series electrode plain paper printers)	5 pcs/set
AC adapter	AC adapter cable	Serial cable	Stand arm
9096003100	9096003200	9096004800	9096002800
AC adaptor cable is also		Cable to connect an electrode	4

For F-50, DS-50 Series

Electrode stand		Compact flash memory card 16MB	Analog (alarm) output cable
9096002600	-	9096003000 For F-53, 54, 55	9096004900 For F-52, 53, 54, 55 and DS-52

For D-50, ES-50, OM-50 Series

Electrode stand	Connector cap	Strap	Soft case
9096002700	9096002900	9096005200	9096005100

Maintenance Parts for Earlier Models

Output cord	AC-10 AC adapter	Printer paper (10 rolls)	Electrode holder for dual channel
9078000200		9079000400	9096001100
Connect a recorder to make easy work of data analysis after measurement. Applicable models: D-20, 10, OM-10 and D-10 series	Applicable models: D-20, F-20, ES-10, OM-10, D-10 and DS-10 series	Applicable models: F-15, 16, DS-15, and F-20 series	Applicable model: D-20 series Adaptor for fitting two electrodes

ELECTRODES & ACCESSORIES for TWIN/CARDY

Exclusively for TWIN pH Electrode (Combination Electrode)

Туре	Measuring range	Sample amount required	Measuring temperature	Liquid junction	Remarks
0112 (For the B-111, B-112, B-113) 9076001000	pH 2 to 12	Approx. 0.1 mL	5 to 40°C	Porous macromolecule	Glass electrode and reference electrode integrated on a 1mm-thick substrate.
0113 (For the B-211, B-212, B-213) 9088000500	pH 2 to 12	Approx. 0.1 mL	5 to 40°C	Porous macromolecule	Glass electrode and reference electrode integrated on a 1mm-thick substrate. Waterproof construction protects the instrument.

Exclusively for TWIN Conductivity Cell

Туре	Measuring range	Cell capacity	Temperature compensation element	Measuring temperature	Remarks
0413 (For the B-173) 9088000400	0 to 19.9mS/cm	Approx. 0.1 mL	Incorporated	5 to 35°C	Ideal for measuring trace samples, such as acid rain.

Exclusively for CARDY Ion Electrode

Туре		Measuring range	Sample amount required	Measuring temperature	Liquid junction	Remarks
Sodium ion electrode 0221 (For the C-121 and C-122) 9076003000	6	0.1% (w/w) to 10% (w/w) NaCl	Approx. 0.1 mL	5 to 35°C	Porous macromolecule	Flat electrode for sodium ion which is so selective that pH or other ions do not affect it.
Potassium ion electrode 0231 (For the C-131) 9076007200	(• 6)	39 to 3,900 mg/L	Approx. 0.1 mL	5 to 35°C	Porous macromolecule	Flat electrode for potassium ion.
Nitrate ion electrode 0241 (For the C-141) 9076007600	(• 6)	62 to 6,200 mg/L	Approx. 0.1 mL	5 to 35°C	Porous macromolecule	Flat electrode for nitric acid ion.

Accessories for TWIN/CARDY

■B-211, B-212 Standard solution set

Y031 pH7 14 mL×6 **Y032** pH4 14 mL×6

× 6

Standard solution set

Y022NaCl 0.5% 4 mL× 2
NaCl 5.0% 4 mL× 2
De-ionized water 14 mL× 4

■**B-173** Standa

Standard solution set

Y023 0.01 mol/LKCl 4 mL×4 De-ionized water 14 mL×4 Standard solution set

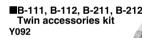
Y024Na⁺ 2000 mg/L 4 mL× 2
Na⁺ 150 mg/L 4 mL× 2
De-ionized water 14 mL× 4

■C-131 K⁺

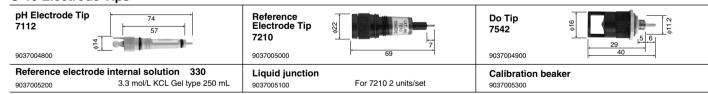
Standard solution set

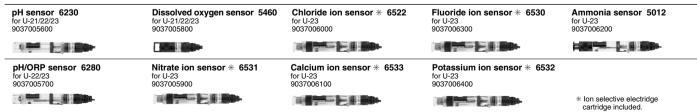
Y025K⁺ 2000 mg/L 4 mL× 2
K⁺ 150 mg/L 4 mL× 2
De-ionized water 14 mL× 4

■ C-141NO₃ Standard


solution set

Y026 NO₃ $^{-}$ 2000 mg/L 4 mL× 2 NO₃ $^{-}$ 150 mg/L 4 mL× 2 De-ionized water 14 mL× 4





ACCESSORIES for U-10, U-20XD/W-20XD SERIES & INTERNAL SOLUTION for REFERENCE ELECTRODE

U-10 Electrode Tips

U-20XD/W-20XD Series Sensors

Internal Solution for Reference Electrode

- ●Reference electrode internal solution for nitrate ion (50mL) 302 Part No.9037006600
- Reference electrode internal solution for chloride (50mL)
 301 Part No.9037006700
- Reference electrode internal solution for calcium/fluoride (250 mL)
 300 Part No.9003003200
- Reference internal solution for potassium (50 mL) 303 Part No.9037006900
- Reference internal solution for ammonia (250 mL) 370 Part No.9012000900
- Calibration beaker Part No.9037007300 U-20
 For automatic calibration

Earlier models ph electrodes metallic electrodes conductivity electrodes accessories

EARLIER MODELS pH ELECTRODES, METALLIC ELECTRODES

3-in-1 Electrodes

Туре	Applicable temperature range(°C)	pH range	Liquid junction	Internal solution	Applicable models
6328-10C For accurate measurements 9003010400	0-80	0-14	Ceramic	#300(KCI)	7, 8 Series (Detail: A)
6327-10C For very accurate measurements 9003009900	0-60	0-14	Sleeve	#300(KCI)	7, 8 Series (Detail: A)
6300 Standard type exclusively for L-7LC 9055000100	0-50	0-14	Plastic fiber	#310 (KCI with AgCI)	L-7LC Series

Reference Electrodes

Туре	Applicable temperature range(°C)	Internal solution	Liquid junction	Applicable models
2080A-06T Ceramic type standard 9003004400	0-60°C	#310 (KCl with AgCl)	Ceramic	7, 8 Series (Detail: B)

Temperature Compensation Electrodes

Туре	Applicable temperature range(°C)	Feature	Applicable models
4143-06T 9003009100	0-100	Temperature compensation electrode	7, 8 Series

Metallic Electrodes (For ORP Measurement)

Туре	Applicable temperature range(°C)	Material of electrode trip	Internal solution	Applicable models
6811-06C Platinum combination type 9003009000	0-50	Pt	#310 (KCl with AgCl)	7, 8 Series (Detail: A)
3010-06T Platinum single polarity type 9003007300	0-60	Pt		7, 8 Series (Detail: B)
3211-06T Silver single 9003007400	0-60	Ag		7, 8 Series (Detail: B)

Applicable models

A: H-7 Series, M-7EI, F-7LC, M-7II, F-7II, F-7SSII, F-7AD, M-8E, F-8E, M-8L, M-8, M-8S, M-8AD, F-8L, F-8, F-8DP, F-8AT, N-8F, N-7IONII (use CB-7 with M-7E, M-7, F-7, F-7SS or F-7DE)

B: M-7E, M-7, F-7, F-7SS, F-7DE, M-7Επ, F-7LC, M-7π, F-7π, F-7SSπ, F-7AD, M-8L, M-8, M-8S, M-8AD, F-8L, F-8, F-8DP, F-8AT, N-8F, N-7IONπ (use CB-7 with H-7 Series, M-8E or F-8E)

EARLIER MODELS CONDUCTIVITY ELECTRODES

Conductivity Cell (Submersible Type)

•	•• •				
Туре	Cell constant (*1) (cm ⁻¹)	Measuring range	Sample amount required	Temperature compensation element	Applicable temperature range
3451-06C For low conductivity water 9056000100	0.1	0.1 μS/cm to 10 mS/cm	50 mL	Incorporated	0-50°C
3452-06C For general-purpose 9056000200	1	1 μS/cm to 100 mS/cm	30 mL	Incorporated	0-50°C
3453-06C For high conductivity water 9056000300	10	10 μS/cm to 1 S/cm	100 mL	Incorporated	0-50°C

^(*1) The cell constants are within $\pm 10\%$ of the values shown.

EARLIER MODELS ACCESSORIES

Туре	Remarks
Electrode relay box (for single type electrode) CB-7	Used when a 3-in-1 type electrode is connected to the old type M-7, M-7E, F-7, F-7ss, M-8E, or F-8E pH meter.
Electrode guard L (5 pcs/set) 9044001200	Protects electrode end. For 6326-06C, 6327-10C, 6328-10C, and 6811-06C.
Electrode guard S (5 pcs/set) 9044001100	Protects electrode end. For 6326-06C, 6327-10C, 6328-10C, and 6811-06C.
Printer paper 9063000300	For M-8AD, F-8DP, F-8AT
BNC/G Ion electrode connector 9003017800	The BNC/G conversion adapter enable the BNC connecter electrode to be connected to G connecter type meter.
pH Checker X-5D 9003017800	In addition to generating an electromotive force equivalento to the glass pH electrode for pH meter check, it contains a potentiometer for generating millivolts to check the ORP meter. It is ideal as a portable inspection instrument where many pH or ORP meters are used on a day-to-day basis in factories and laboratories.

pH METER F-50 Series Na∨i®

- Color display and navigation function for enhanced user-friendliness.
- Enhanced data reliability with validation feature.(GLP/GMP compliance)
- ●Benchtop multi-parameter meter allows measurement of up to 4 parameters.
- •Electronic record, audit trail and electronic signatures are security function features. (FDA 21CFR Part11 compliance)

CONDUCTIVITY METER DS-50 Series Na∨i®

- Color display and navigation function for enhanced user-friendliness.
- Electronic record, audit trail and electronic signatures are security function features. (FDA 21CFR Part11 compliance)
- Automatic data-logging function.
- Self diagnostic function assures reliable measurement.

Portable pH METER D-50 Series Nコンiの

- Revolutionary waterproof meter and electrodes enhance care-free operation in the lab or field.
- Quick connection to PC allows easy and fast data evaluation.
- Portable multi-parameter meter allows measurement of up to 4 parameters.
- Automatic data-logging function.
- Self diagnostic function assures reliable measurement.

Portable CONDUCTIVITY METER ES-51 NaVi®

- Revolutionary waterproof meter and electrodes enhance care-free operation in the lab or field.
- Quick connection to PC allows easy and fast data evaluation.
- Automatic data-logging function.
- Self diagnostic function assures reliable measurement.

Compact pH METER Twin pH B-211/212

- •Immersion, scoop, and flat measurement
- Waterproof construction protects the instrument
- Automatic calibration

На

ORP

DO

Cardy Series Compact SALT METER C-121 Compact ION METERS C-122(Na⁺)/C-131(K⁺)/C-141(NO₃⁻)

Compact CONDUCTIVITY METER Twin COND B-173

- ●Two measurement methods: drop the sample on the sensor or immerse the sensor in the sample
- Waterproof flat sensor
- Auto-hold and to-calibration functions

Portable DO METER OM-51 Na∨i 6

- Revolutionary waterproof meter and electrodes enhance care-free operation in the lab or field.
- Quick connection to PC allows easy and fast data evaluation.
- Automatic data-logging function.
- Self diagnostic function assures reliable measurement.

Horiba continues contributing to the preservation of the global environment through analysis and measuring technology.

Please read the operation manual before using this product to assure safe and proper handling of the product.

- The contents of this catalog are subject to change without prior notice, and without any subsequent liability to this company.
- The color of the actual products may differ from the color pictured in this catalog due to printing limitations. • It is strictly forbidden to copy the content of this catalog in part or in full.

http://www.horiba.com e-mail: info@horiba.co.jp

●HORIBA, Ltd.
Head Office
Miyanohigashi, Kisshoin
Minami-ku, Kyoto, Japan
Phone: 81 (75) 313-8123
Fax: 81 (75) 321-5725

Tokyo Sales Office 1-7-8 Higashi-Kanda Chiyoda-ku, Tokyo, Japan Phone: 81 (3) 3861-8231 Fax: 81 (3) 3861-8259

Beijing Representative Office Room 1725, Tower 2, Bright Chang An Building, No. 7, Jianguomennei Avenue, Beijing 100005, China Phone: 86 10-6522-7573 Fax: 86 10-6522-7582

No. 918, Huaihai Zhong Road, Shanghai, China, 200020 Phone: 86 21-6415-3689/90 Fax: 86 21-6415-9746

●HORIBA / STEC INCORPORATED

Shanghai Representative Office Unit F1 16F Unit F1 16F Unit F1 16F No.15 Alley6, Lane 485, Sec. 1, Kuang Fu Rd., No. 918, Huaihai Zhong Road, Shanghai, China, 200020 Phone: 886 (3) 5799143

■HORIBA KORFA I td. 112-6 Sogong-Dong Choong-ku, Seoul, Korea Phone: 82 (2) 753-7911 Fax: 82 (2) 756-4972

● HORIBA INSTRUMENTS Pte. LTD.

Pte. LTD. 10 Ubi Crescent #05-11/12, Ubi Techpark Singapore 408564 Phone: 65 6745-8300 Fax: 65 6745-8155

●HORIBA INSTRUMENTS LIMITED

Kyoto Close Summerhouse Road Moulton Park, Northampton NN3 6FL, U.K. Phone: 44 (1604) 542500 Fax: 44 (1604) 542699

●HORIBA INSTRUMENTS INCORPORATED

Irvine Facility
17671 Armstrong Avenue
Irvine, CA 92614, U.S.A.
Phone: 1 (949) 250-4811
Fax: 1 (949) 250-0924

●HORIBA EUROPE GmbH Head Office Hans-Mess-Str.6

D-61440 Oberursel/Ts.

Phone: 49 (6172) 1396 Fax: 49 (6172) 137385

Germany Phone: 49 (6172) 1396-0

Ann Arbor Facility 5900 Hines Drive Ann Arbor, MI 48108 U.S.A.

Phone: 1 (734) 213-6555 Fax: 1 (734) 213-6525

Leichlingen Facility
Julius-kronenberg Strasse D-42799 Leichlingen Germany Phone: 49 (2175) 8978-0 Fax: 49 (2175) 8978-50

1080 E. Duane, Suite. A Sunnyvale, CA 94086 U.S.A. Phone: 1 (408) 730-4772 Fax: 1 (408) 730-8975 HORIBA FRANCE

Rue L. et A. Lumière Technopard F-01630 St-Genis-Pouilly France Phone: 33 (4) 50-42-27-63 Fax: 33 (4) 50-42-07-74

A-3430 Tulln, Austria Phone: 43 (2272) 65225 Fax: 43 (2272) 65230

●HORIBA GmbH

Kanlanstrasse 5

HORIBA SWEDEN Hertig Carlsvag 55-57 S-15138 Södertälje Sweden Phone: 46 (8) 550-80701 Fax: 46 (8) 550-80567

HORIBA CZECHIA

HORIBA CZECHIA Organizachi slozka Praha Petrohradska 13 CZ-101 00 Praha 10, Czech Republic Phone: 420 (2) 717-464-80 Fax: 420 (2) 717-470-64

HORIBA ITALY

Europalace Corso Torino 43/45 10043 Orbassano, Torino, Italy Phone: 39 (011) 9040601 Fax: 39 (011) 9000448