DCT-7088 Portable Digital Correlation Transit Time Ultrasonic Flowmeter

Software Version 3.23

POLYSONICS

Sechang Instruments Co., Ltd.

1	
1.1	1-1
1.2	1-1
1.3	1-3
1.4	1-3
1.5	1-4
1.6	1-6
1.7	1-7
1.8	1-8
1.9	1-9
2	
2.1	2-1
2.2	2-3
2.3	2-4
3	
3.1	3-2
3.1 7	3-3
3.2	3-5
3.3	3-6
3.4	3-7
3.5 . , 7	3-8
3.6	3-37
4	
4.1	4-1
4.2	4-3
4.3	4-5
4.4	4-6
4.5	4-14
4.6	4-14
4-7 -	4-15

5	
5.1 0	5-1
5.2	5-3
6	6-1

,

,

1.1

DCT-7088						(
가	가)			(
가				,		·	
,		(3)	,		,	,
					•		

TIMEGATE

.

1.2

,

			가	가
HS-P	. (, 1-1)	2 가	

,

.

.

(1-2)

•

.

Figure 1-1 Typical Transit Time System

Figure 1-2 Flow Profiles

DCT-7088	DC				12V
12~15V DC	•			BREAKUU	BOX
Ł	(90~264)	V AC, 50/60	Hz, 15W)		
Ł	(12)	VDC)			
				•	
BREAKOUT BOX	2.1				
1.5.1					
3					
ير اح		6 (1-3)	,
7F	BREAKOUT BOX		·		71
RUR	,				- 1
BREAKOUT BOX	4				가

•

•

Figure 1-3 External Features of the DCT-7088

.

.

2.1 BREAKOUT BOX

1.7

.

FLASH

94

DCT-7088

1-1 . .

DCT-70881B16A

8

WINDOW 95 VERSION OF THE TIME GATE 16 FEET

Table 1 -1 DCT-7088 Flowmeter Standard Configuration and Options				
Description	Model Code Number			
Portable Digital Correlation Transit Time Flowmeter ¹	DCT-7088			
Time <i>GATE</i> [™] Configuration and Analysis Program ¹				
 ✓ Windows[®] 3.11 version ² ✓ Windows 95[®] version 	A B			
Battery Duration				
∞ 8 hours ¹	1			
∠ 16 hours	2			
Transducer Cable Length				
⊯ 16 ft (5 m) ¹	16A			
	XXXA			
Additional Options				
∠ Ultrasonic Thickness Gauge (UTG), English units	0704/0188			
	0704/0187			
	22334-0001			
∠ High temperature transducer block 4	20739-0001			
 ¹ Standard items. ² The Windows[®] 3.11 version of TimeGATE[™] is compatibles with Windows[®] versions : 	3.1 and higher.			

³ Additional cable is available in increments of 10 feet to a maximum length of 1,000 feet.

⁴ High temperature transducer blocks allow transducer mounting with pipe skin temperatures of -40 to +470?F (-40 to +243?C).

1-2 DCT-7088

Table 1 -2 DCT-7088 Flowmeter Specifications				
Performance specifications	1			
Flow range	±0 to 50 FPS (±0 to 15 MPS).			
Accuracy	$\pm 0.5\%$ of velocity or ± 0.05 FPS (0.0152 MPS), typical on a calibrated system/digital output			
Sensitivity	0.001 FPS (0.3 mm per sec) at any flow rate including zero.			
Linearity	0.1% of scale, digital output			
Pipe size	1 to 200 in (25 mm to 5 m).			
Fluid	Homogeneous liquids without gas bubbles.			
Functional specifications				
Outputs	✓ 4 to 20 mA (into 1,000 ohms), 12 bit, isolated.✓ RS232 serial interface.			
Power supply	Built-in lead acid gel battery, providing:			
	🗷 8 hours continuous operation (standard).			
	z 16 hours continuous operation (optional).			
Keypad	19-key with tactile action.			
Display	40-character, 2-line, alphanumeric, backlit LCD.			
	Screens include present and total flow, velocity, signal strength, and delta T.			
Data logger				
	Programmable in 1-second intervals.			
Temperature ²	Instrument: -5 to +140?F (-20 to +60?C).			
	Transducers: $a < -40$ to $+300$?F (-40 to $+150$?C), standard.			
	-40 to +470?F (-40 to +243?C, when using optional high- temperature transducer blocks.			
Physical specifications				
Transmitter	NEMA 6 (IP67), waterproof against accidental immersion and splashproof with lid open.			
Transducers	Encapsulated design.			
	Standard cable length: 16 ft (5 m).			
Transmitter weight	Approximately 11 lbs (4.9 kg) with standard 8-hour battery.			
Approximately 15 lbs (6.8 kg) with optional 16-hour battery.				
1 Performance specifications	are established under reference conditions.			
² Consult factory for higher o	perating temperatures than those listed.			

,

2.1 Breakout Box

Figure 2-1 Breakout Box Components

2. 3.6.14

.

2.2

,

, 4.2.1

Figure 2-2 Slide Track

Figure 2-3 Current Loop Power Jumper Settings for HS-P

Figure 2-4 Wiring Diagram for Self Powered Current Loop

Figure 2-5 Wiring Diagram for Loop Powered Current Loop

, . (4) . (5)

NOTE: TIME GATE RS232

:

Table 3-1

Table 3-1	
Menu Addresses	

PRIMARY DISPLAYS: Flow/Net Totalizer (Menu 00) Flow/Velocity (Menu 01) Flow/Positive Totalizer (Menu 02) Flow/Negative Totalizer (Menu 03)

Signal Strength/Low Signal Cutoff (Menu 04)

PIPE:

Pipe OD (Menu 10) Pipe Wall Thickness (Menu 11) Pipe ID (Menu 12) Pipe Material (Menu 13) Pipe Sound Speed (Menu 14) Pipe Inside Roughness (Menu 15)

LINER:

Liner Material (Menu 16) Liner Thickness (Menu 17) Liner Sound Speed (Menu 18) Liner Inside Roughness (Menu 19)

FLUID:

Fluid Type (Menu 20) Fluid Sound Speed (Menu 21) Fluid Viscosity (Menu 22)

TRANSDUCER:

Transducer Type (Menu 23) Transducer Mounting (Menu 24) Transducer Spacing (Menu 25)

FLOW:

Flow Units (Menu 30) Max Flow Range (Menu 31) Min Flow Range (Menu 32) Damping (Menu 33) Low Flow Cutoff (Menu 34) Low Signal Cutoff (Menu 35)

TOTALIZER: Totalizer Units (Menu 36) Totalizer Multiplier (Menu 37) Net Totalizer (Menu 38) Positive Totalizer (Menu 39) Negative Totalizer (Menu 40) Totalizer Reset (Menu 41) **OPTIONS:** Measurement Units (Menu 42) Site Parameters (Menu 43) RS232 Configuration (Menu 46) Change System Password (Menu 47) Change Scale Factor Password (Menu 48) Unit ID (Menu 49) CALIBRATION (Menu 50): Zero Set (Menu 51) Scale Factor (Menu 52) Sound Speed Compensation (Menu 53) Date and Time (Menu 54) CURRENT LOOP (Menu 56): Current Loop Span (Menu 57) Current Loop Calibration (Menu 58) Current Loop Test (Menu 59) ALARMS (Menu 70): Program Alarms (Menu 71) View Alarms (Menu 72) DATA LOG Data Log Setup (Menu 80) Data Log Interval (Menu 81) DIAGNOSTICS: Signal Strength/Margin (Menu 90) Delta Time/Fluid Sound Speed (Menu 91) Reynolds #/Profile Factor (Menu 92) Current Loop Output (Menu 93) Software/Firmware Rev. Level (Menu 94) PRINT: Print Log Setup (Menu 96) Prints Settings (Menu 97) Prints Diagnostics (Menu 98) Prints Current Screen (Menu 99)

•

3.3.1

1. MENU

,

	가		
4	()	가	

.

Main	Menu
≈Pipe	∞Liner

가

≤Pipe	∠Liner
$_{\measuredangle}$ Fluid	$_{\mathscr{Z}} \mathtt{Xducer}$
<i>s</i>Flow	$_{{ { \mathbb Z}}} { t Total.}$
≤Options	$_{\mathscr{Z}}$ Calibr.
z4-20mA	$_{\mathscr{A}}\texttt{Alarms}$
$_{st}$ DataLog	. _≪ Diagn

2. , 3. 가

, ENTER FLOW 가

3**-7**

IMPORTANT :

4.

가

3.5 (QUICK SETUP)

,

3.6 ,	, 가		
	, 가		
가 (3.2) .	(, PIPE L (_INER) 3.3)	
가 가	,		,
IMPORTANT:			
3.5.8 47 3.6.1	48 .		
(00-04)가. NOTE: 3.6.7	, , ()	,)	
FLOW/ NEI IOTALIZER (00)		
,	- - 3	Flow= Net	0.00 GPM 0 x0.1Gal
FLOW/ VELOCITY (01)			
ft/sec(FPS) (ENGLISH) , 42 .	(METERIC)	Flow= Vel =	0.00 GPM 0.00 FPS

3**-9**

•

FLOW/ POSITIVE TOTALIZER(02)		
/	Flow=	0.00 GPM
39	Pos	0 x0.1Gal
FLOW/NEGATIVE TOTALIZER (03)		
/ -	71.000	0 00 GDX
- 40	Neg	0.00 GPM 0 x0.1Gal
SIGNAL STRENGTH/ LOW SIGNAL CUTOFF (0	4)	
/	SigStr =	0
	Cutoff =	2
NOTE : 35		
3.6.2 PIPE SET UP MENUS		
PIPE		
, (ID), . (ID),		
(OD), 2フト フト .		
()가		
, ,		
PIPE OD (10)		
(OD) . フト		
•		

OD : 1. 10			
			Pipe OD 13.87 inches
2. 3. DOWN	ENTER		
4.	•		Select Option &Actual &Circum
ACTUAL			
PIPE WALL THICKNESS (11)		
PIPEID (12)			Pipe Wall Thickness 0.38 inches
PIPE MATERIAL (13)	. (ID)	Pipe ID 13.12 inches
CARBON STEFI			Pipe Material *CARBON STEEL
STAINLESS STEEL CAST IRON DUCTILE IRON COPPER			
PVC PVDF LOW DENSITY PVDF HI DENSITY ALUMINUM ASBESTOS FIBERGLASS-EPOXY			
OTHER			

NOTE:		OTHER		
OTHE	R , 15	14		
PIPE SOUND	SPEED (14)			
	13 . OTHER	OTHER		Pipe Sound Speed 10440 FPS
OTHER		·		
PIPE INSIDE	ROUGHNESS (15)		
. OTHER	13 OTHER			Pipe Roughness 0.000150 Ft
<u>CARMERON HY</u> OTHER	DRAULIC DATA BOOK			
NOTE:				
		19		
3.6.3 LINER				
LINE	. ,		가	

3-12

(Menu 16)

Liner	Material
* POLY	ETHYLENE

- \swarrow NONE (no liner)
- ✓ TAR EPOXY
- *∠* RUBBER

.

- ✓ MORTAR
- ✓ POLYPROPYLENE
- ✓ POLYSTYROL
- ∠ POLYSTYRENE
- ✓ POLYESTER
- ∠ POLYETHYLENE
- ∠ EBONITE
- ∠ TEFLON
- ∠ OTHER

NOTE:

. OTHER

(18)	(19)
(-0)	(- /

.

OTHER

- (17)
- (18)
- 16 OTHER

OTHER

. OTHER

.

Liner Thickness 0.00 Inches

Liner Sound Speed 8203.00 FPS

3**-13**

(19) 16 OTHER

INGERSOLL RAND

Liner Roughness 0.001000

CAMERON HYDRAULIC DATA BOOK	
. OTHER	
3.6.4	
· · ·	
(20)	
« WATER	FIUID Type *GASOLINE
∠ SEA WATER	
<pre> KEROSENE </pre>	
✓ GASOLINE	
✓ FUEL OIL #2	
∠ PROPANE (-45 °C)	
NOTE: 가 OTHER	
. OTHER	
(21) (22)	

Configuring and Operating the Flowmeter

2. DOWN

	Flow Unit	ts Per
	Sec *Min	n Hour
3. ESE SEC ESE MIN ESE HR (million gallons) ESE DAY (31) (32)	Sec *M11	n Hour
· · ·	Max Fl 2000.00	ow GPM
NOTE:	Min Fl -2000.00	ow GPM
+9.6m/s , -9.76m/s .		
(33)		
	Dampi	ng
· · · · · · · · · · · · · · · · · · ·	5 sec	28
4 ~ 2011A N , N		
1 99 1 가 .		
,		

(LOS) 가 .

TOTALIZER UNITS (36)

Totalizer	Units
*Gallo	ons

- ∠ LITERS
- ∠ MGAL (million gallons)
- ∠ CUBIC FT
- ✓ CUBIC METERS
- \measuredangle ACRE FT
- ✓ OIL BARRELS
- ∠ LIQUOR BARRELS

NOTE :

700	・ 가X1 ,7	, 700	Totalizen *x0.01	x0.1
X 100 .				
∞ X 0.01				

.

- ∠ X 0.1
- z X1
- ∠ X 10
- ∠ X 100
- ∠ X 1000
- ∠ X 10000

3.6.8			
, 가	, ENGLISH METRIC , RS232 가 .	,	
(42)		
ENGLISH	가 .		Measurement Units *English Metric
ENGLISH , mm	(FPS) m/sec .	.METRIC	
(43)		
. 1	, , , , , 16 ,16가 43		Site Parameters 1:3.507 In, PVC
, 1:	· 가1 ·		
43 フト	, , , ENTER ENTER	가 ,	

3**-29**

HS-P 4가		
•		Prog Alarm #
		z1 z2 z3 z4
1. 71		
2 (1~ 4)	Alarm 1 On Condition
	,	*Flow <
3. ON	•	
NOT PROGRAMMED (OFF)		
FLOW > (
)		
FLOW < (
)		
SIGNAL > (
)		
SIGNAL < (7		
)		
4. DOWN .		
가 .		On Cond. Value
		16.00 Gal/S
5. ON ENTER		
NOTE : 30		
6. DOWN .		
		Alarm I Off Cond.
		FIGW 2
7. OFF .		
ON		
OFF		
, ON, OFF	DEAD BAND	

•

		FLOW > 250	,
OFF	FLOW <240		250
		,	240

IBM

PLOLIINK 80 START (OR STOP) AUTO INTERVAL VIEW

(

.)

•

START

.

1. 80			
	Stop Lo	g	
	Are you		
2. STOP	sure?(5=	Yes)
3.5 .			
A010()			
AUTO			
1. 80			
	Start:	5	7:08:30
2. AUTO	Stop:	6	23:15:00
3. ENTER .			

		:
1.	80	
2 VIEV	V	
3.UP	DOWN	
4. ENT	ER	

5.5	•
6. (.)	

	(81)
81		
	81	
80	NTERVAL	

1	

Erase	Log	File?
Are you		
Erase	Tes) Log) File?
Really	sure	e?(.=Yes)
Da	ta]	Log
Е	rase	ed

Log Interval	
60 secs	

3.6.13

DIAGNOSTIC ()		가
		가	

•

,

۰.

0%

0%

(98) (90~94) MENU 98 . (99)

MENU 99

•

3.7			
,			
3.7.1			
42 ()		
43 ()		
3.7.2			
가			
	:		
	דו	г	
2. INTTALIZING	(3-5)		Master Erase.
ERASE	(3~3)		Are you sure?(5=yes)
3.5	가	-	
. (3)	•	Master Erase.Are
4 71		Ĺ	really sure?(.=yes)
(3 5	,		
.)			

Master Erase Completed

Master Erase Aborted

3**-43**

URL:http://www.sechang.com

가

.

.

Figure 4-1 Site Recommendations

4.2				
1. 4.1				
2. 3		4 4	(3.5)
. 25	•			
3. 25				
NOTE:	1	16 . 4.2.1		
4. V : 4.4.1 W : 4.4.2 Z : 4.4.3	·			
5. IMPORTANT:		3 9 .		
, 가				
6. PolyGlide IMPORTAN T:	가	가		
		. 4.6 PolyGlide	,	,
7. (4.7)		4.3 .		

4.2.1

	HS-P		. (4-2)		V	W
Z	가				25		406mm

(0.1 0.05 INCH 가)

Figure 4-2 Using the Slide Track

1.		•	가
2. 3.	·		,

4.4.

4-5

Figure 4-4 Mounting the Transducers with the V Method

4.4.2 W

Figure 4-5 Mounting the Transducers with the W Method

Figure 4-6 Mounting the Transducers with the Z Method

Figure 4-7 Establishing a 3 O' clock and 9 O' clock Reference (Z Method)

NOTE:

•

Figure 4-8 Tracing the 3 O' clock Transducer (Z Method)

5.

NOTE:

,

.

,

Figure 4-9 Wrapping the Gauging Paper Around the Pipe (Z Method)

Figure 4-10 Marking the Intersection Point on the Paper (ZMethod)

Figure 4-11 Folding the Gauging Paper in Half (Z Method)

8.

432mm

Figure 4-13 Drawing a Horizontal Line at the 3 O' clock Position (Z Method)

Figure 4-14 Marking the Transducer Spacing (Z Method)
13.

가

3

Figure 4-15 Replacing and Aligning the Gauging Paper (Z Method)

. (4-17)

Figure 4-17 Tracing the 9 O' clock Transducer (Z Method)

16. 4.2 5 10

Figure 4-18 Mounting the Transducers with Straps (Z Method)

4-19 Z

Figure 4-19 Final Z Mounting Method Installation

4.5

	150~24	43		•
NOTE:	PolyGlide			, 121
: 1. HI TEMP BLOCK			23	
2.		(DOW O	CORNING 11	1)
(RTV)	
3.				
4.				
	가	(4.2)	

4.6

. POLYGLIDE

1		가

POLYGLID

1. .

.

2. 3.

•

4. , 가

•

,

.

•

,

)

POLYGLIDE

121

RTV(GE RTV 108)

. (

(DOW CORNIGN 111)

243 . RTV .

IMPORTANT:

4.7

. 457mm

1. " A " ,"B"

2. . .

3. .

4.

IMPORTANT:

5.

6.

:

URL : http : //www.sechang.com

.

Figure 4-20 Nylon Tie Down Straps

.

•

5-1

Table 5 -1Selecting the Calibration Method				
Calibration Method	Function	Application		
Zero set calibration				
∠Zero flow set	Zeros the instrument for an actual no flow condition	Installations where flow can be stopped		
⊯Manual zero set	Applies a manually entered offset to all flow readings	Where an offset is required		
Scale Factor	Compensates for variations in the inside diameter of the pipe	As required on installations where the zero point has already been set and verified under zero flow conditions		

NOTE: 4 20mA

. 6

5.10

	0		
	. 0	가	
フト 0	. 2가 0	51 :	
0	,		
NOTE: 0	0.0015m/S	0	
0			

.

5.1.1.0

0 1. 2. 3.	가 . (가.	가	.)
5.1.2 0				
가	가	0		가
1. 5.11. 2.	· 가			

•

3. 51

	Set	Zero
≈No	Flow	∡Manual

4.NO FLOW

0

5.1.3 0

가

5-2	

10

Table 5-2Example of Manual Zero Set			
Uncalibrated Flow Reading (before manual zero offset)	Manual Zero Offset	Calibrated Flow Reading (after manual zero offset)	
250 GPM	10 GPM	240 GPM	

0 :

2.

3. 51

4.

52

5.2.1

- 7¦ 0 . . --5.2.2 52 7¦ 7¦

1. 52

2.

Scale Factor	
.985	
ENTER .	

Scale	Fact	Password?
	?	

•

.

•

.

.

.

3.	ENTER	
	52	

IMPORTANT:

48

.

.

4~20mA .

NOTE:

. (2.3)

- 1. HS-P BREAK OUT 4~20mA
- (2-1)
- 2. 58

:

3. 가 4mA

ENTER

.

- 4.3 20mA
- 5. 59

8.4mA	(MINIMUM ANTICIPATED)	ENTER
9.DOWN		
	Span? 20 mA 0.00 Gal/S	
10. 20mA 7	(FULL SCALE)	ENTER .
11.		

FLUID SOUND VELOCITIES AND KINEMATIC VISCOSITIES

The information in the following "Fluid Sound Velocities and Kinematic Viscosities" table is based on material from the Cameron Hydraulic Data Book (17th ed., Ingersoll-Rand, 1988) and Tables of Physical and Chemical Constants (13th ed., Longmans, 1966).

LIQUID	tz C	<i>c</i> (<i>m</i> / <i>s</i>)	t≈F	c(ft/s)	cSt
Acetaldehyde CH ₃ CHO	16.1 20		61 68		0.305 0.295
Acetic acid	50	1584	122	5196	
10%	15		59		1.35
50%	15		59		2.27
80%	15		59		2.85
Concglacial	15		59		1.34
Acetic anhydride	24 15	1384 	75 59	4540 	 0.88
Acetone CH ₃ COCH ₃	20	1190	68	3903	0.41
Acetylene tetrabromide	28	1007	82	3303	
Acetylene tetrachloride	28	1155	82	3788	
Alcohol allyl	20 40		68 104		1.60 0.90
butyl-n	20 70		68 158		3.64 1.17
ethyl (grain) C ₂ H ₅ OH	20 37.8		68 100		1.52 1.2
methyl (wood) CH ₃ OH	15 0		59 32		0.74 1.04
propyl	20 50		68 122		2.8 1.4
Ammonia	-17.8		0		0.30
Amyl acetate	29.2	1173	85	3847	
n-Amyl alcohol	28.6	1224	83	4015	
iso-Amyl ether	26	1153	79	3782	
Aniline	20 10	1656 	68 50	5432	4.37 6.4

LIQUID	tz C	<i>c(m/s)</i>	t≈F	c(ft/s)	cSt
Argon	-183.0	816.7	-297	2679	

LIQUID	t≰ C	c(m/s)	t z F	c(ft/s)	cSt
Asphalt, blended RC-0, MC-0, SC-0	25 37.8		77 100		159 - 324 60 - 108
RC-1, MC-1, SC-1	37.8 50		100 122		518 - 1080 159 - 324
RC-2, MC-2, SC-2	50 60		122 140		518 - 1080 215 - 430
RC-3, MC-3, SC-3	50 60		122 140		1295 - 2805 540 - 1080
RC-4, MC-4, SC-4	60 82.8		140 180		1725 - 4315 270 - 540
RC-5, MC-5, SC-5	60 82.8		140 180		6040 - 18340 647 - 1295
RS-1, MS-1, SS-1	25 37.8		77 100		33 - 216 19 - 75
Asphalt emulsions Fed #1	25 37.8		77 100		215 - 1510 75 - 367
Fed #2, V, VI	25 37.8		77 100		33 - 216 19 - 75
Automotive crankcase oils SAE-5W	-17.8		0		1295 max
SAE-10W	-17.8		0		1295 - 2590
SAE-20W	-17.8		0		2590 - 10350
SAE-20	<i>98.9</i>		210		5.7 - 9.6
SAE-30	98.9		210		9.6 - 12.9
SAE-40	<i>98.9</i>		210		12.9 - 16.8
SAE-50	<i>98.9</i>		210		16.8 - 22.7
Automotive gear oils SAE-75W	<i>98.9</i>		210		4.2 min
SAE-80W	98.9		210		7.0 min
SAE-85W	98.9		210		11.0 min

LIQUID	tz C	<i>c(m/s)</i>	t≈F	c(ft/s)	cSt
SAE-90	<i>98.9</i>		210		14 - 25
SAE-14Q	<i>98.9</i>		210		25 - 43
SAE 150	<i>98.9</i>		210		43 Min.
Beer	20		68		1.8
Benzene (Benzol) C ₆ H ₆	20 0	1321 	68 32	4333 	0.744 1.00
Benzophenone	100	1316	212	4316	
Bismuth	285	1663	545	5455	
Bone Oil	54.4 100		130 212		47.5 11.6
Bromine	20		68		0.34
Bromobenzene	50	1074	122	3523	
Bromoform	25	908	77	2978	
Butanen	-1.1 		-50 30		0.52 0.35
Butyl acetate	30	1172	86	3844	
n-Butyl alcohol	20	1257.7	68	4125	
iso-Butyl bromide	-104	1450	-155	4756	
Butyric acid n	20 0		68 32		1.61 2.3cp
Cadmium	360	2150	680	7052	
Caesium	130	967	266	3172	
Calcium chloride 5%	18.3		65		1.156
25%	15.6		60		4.0
Carbolic acid (phenol)	18.3		65		11.83
Carbon tetrachloride CCI ₄	20 37.8		68 100		0.612 0.53
Carbon disulphide CS ₂	25	1149	77	3769	

LIQUID	tz C	<i>c(m/s)</i>	t z F	c(ft/s)	cSt
	0 20		32 68		0.33 0.298
Carbon tetrachloride	20	93 8	68	3077	
Castor oil	18.6 37.8 54.4	1500 	65 100 130	4920 	 259-325 98-130
China wood oil	20.6 37.8		69 100		308.5 125.5
Chlorine	20	850	68	2788	
m-Chlornitrobenzene	40	1368	104	4487	
Chlorobenzene	25	1302	77	4271	
Chloroform	20 25 60	 995 	68 77 140	 3264 	0.38 0.35
Cocoanut oil	37.8 54.4		100 130		29.8 - 31.6 14.7 - 15.7
Cod oil	37.8 54.4		100 130		32.1 19.4
Corn oil	54.4 100		130 212		28.7 8.6
Corn starch solutions 22 Baume	21.1 37.8		70 100		32.1 27.5
24 Baume	21.1 37.8		70 100		129.8 95.2
25 Baume	21.1 37.8		70 100		303 173.2
Cotton seed oil	37.8 54.4		100 130		37.9 20.6
Crude Oil 48?API	15.6 54.4		60 130		3.8 1.6
40?API	15.6 54.4		60 130		9.7 3.5

LIQUID	tz C	c(m/s)	t≤F	c(ft/s)	cSt
35.6 API	15.6 54.4		60 130		17.8 4.9
32.6 API	15.6 54.4		60 130		23.2 7.1
Salt Creek	15.6 54.4		60 130		77 6.1
Cyclohexane	20	1278	68	4192	
Cyclohexanol	30	1622	86	5320	
Decano-n	-17.8 37.8		0 100		2.36 1.001
l-Decene	20	1250	68	4100	
Deuterium oxide	20	1381	68	4530	

LIQUID	tz C	c(m/s)	t z F	c(ft/s)	cSt
Diesel fuel oils 2D	37.8 54.4		100 130		2 - 6 1 3.97
3D	37.8 54.4		100 130		6 - 11.75 3.97 - 6.78
4D	37.8 54.4		100 130		29.8 max 13.1 max
5D	50 71.1		122 160		86.6 max 35.2 max
Diethyl Ether	20		68		0.32
Diethylene glycol	21.1 30	 1533	70 86	 5028	32
Diethylene glycol monoethyl ether	30	1296	86	4251	
Dimethyl siloxane (Dow Corning 200 fluid)	20	912.3	68	2992	
Diphenyl	100	1271	212	4169	
Diphenyl ether	30	1462	86	4795	
Ethanol	20	1156	68	3792	
Ethanol amide	25	1724	77	5655	
Ether (diethyl)	25	985	77	3231	
Ethyl acetate CH ₃ COOC ₂ H ₅	15 20	 1133	59 68	 3716	0.4 0.49
Ethyl alcohol	20	1161.8	68	3811	
Ethyl bromide C ₂ H ₃ Br	10 20	932 	50 68	3057	 0.27
Ethyl glycol	30	1606	86	5268	
Ethyl iodide	20	876	68	2873	
Ethylene bromide	20		68		0.787
Ethylene chloride	20		68		0.668
Ethylene dibromide	24	1014	75	3326	

LIQUID	tz C	<i>c(m/s)</i>	t z F	c(ft/s)	cSt
Ethylene dichloride	23	1240	73	4067	
Ethylene glycol	21.1 30	 1616	70 86	 5300	17.8
Ethylene glycol monoethyl ether	30	1279	86	4195	
Ethylene glycol monomethyl ether	30	1339	86	4392	
Formaldehyde	25	1587	77	5205	
Formamide	25	1610	77	5281	
Formic acid 10%	20 20	1299 	68 68	4261 	 1.04
50%	20		68		1.2
80%	20		68		1.4
<i>Conc.</i>	20		68		1.48
Freon -11	21.1		70		0.21
-12	21.1		70		0.27
-21	21.1		70		1.45
Fuel Oils 1	21.1 37.8		70 100		2.39 - 4.28 2.69
2	21.1 37.8		70 100		3.0 - 7.4 2.11 - 4.28
3	21.1 37.8		70 100		2.69 - 5.84 2.06 - 3.97
5A	21.1 37.8		70 100		7.4 - 26.4 4.91 - 13.7
5B	21.1 37.8		70 100		26.4- 13.6 - 67.1
6	50 71.1		122 160		97.4 - 660 37.5 - 172
Gallium	50	2740	122	8987	
Gas oils	21.1		70		13.9

URL: http://www.sechang.com

LIQUID	tz C	c(m/s)	t≤ F	c(ft/s)	cSt
	37.8		100		7.4
Gasolines					
<i>a</i>	15.6		60		0.88
	37.8		100		0.71
<i>b</i>	15.6		60		0.64
<i>c</i>	15.6 37.8		60 100		0.46 0.40

LIQUID	tz C	c(m/s)	t z F	c(ft/s)	cSt
Glycerine 100%	30 20.3 37.8	1923 	86 69 100	6307 	 648 176
50% Water	20 60		68 140		5.29 1.85cp
Glucose	37.8 65.6		100 150		7.7M - 22M 880 - 2420
Guaicol	100	1252	212	4107	
Helium	-268.8	179.8	-452	590	
n-Heptane	-17.8 22.4 37.8	 1150 	0 72 100	 3772 	0.928 0.511
Heptene	30	1082	86	3549	
Heptyne	30	1159	86	3802	
Hexane	20	1203	68	3946	
n-Hexane	-17.8 21.2 37.8	 1085 	0 70 100	 3559 	0.683 0.401
Honey	37.8		100		73.6
Hydrogen	-256	1187	-429	3893	
Industrial lubricants Turbine oils 685 SSU at 100 ≤ F	15.6 93.3		60 200		647 14.5
420 SSU	15.6 93.3		60 200		367 11
315 SSU	15.6 93.3		60 200		259 8
215 SSU	15.6 93.3		60 200		151 7.3
150 SSU	15.6 93.3		60 200		99 6

LIQUID	tz C	<i>c(m/s)</i>	t z F	c(ft/s)	cSt
Machine lubricants #8	37.8 54.4		100 130		23 - 34 13 - 18
#10	37.8 54.4		100 130		34 - 72 18 - 25
#20	37.8 54.4		100 130		72 - 83 25 - 39
#30	37.8 54.4		100 130		75 - 119 39 - 55
Cutting oils #1	37.8 54.4		100 130		30 - 40 17 - 23
#2	37.8 54.4		100 130		40 - 46 23 - 26
Indium	260	2215	500	7265	
Ink, printers	37.8 54.4		100 130		550 - 2200 238 - 660
Insulating oil	21.1 37.8		70 100		24.1 max 11.75 max
Kerosene	20 25	 1315	68 77	 4313	2.71
Jet Fuel (av)	-34.4		-30		7.9
Lard	37.8 54.4		100 130		62.1 34.3
Lard oil	37.8 54.4		100 130		41 - 47.5 23.4 - 27.1
Lead	340	1760	644	5773	
Linseed oil	37.8 54.4		100 130		30.5 18.94
Menhadden oil	37.8 54.4		100 130		29.8 18.2
Menthol	50	1271	122	4169	

LIQUID	tz C	c(m/s)	t z F	c(ft/s)	cSt
Merck	20.2	1482.3	68	4862	
Mercury	20 21.1 37.8	1454 	68 70 100	4769 	 0.118 0.11
Methanol	20	1118	68	3667	
Methyl acetate	20 30	 1131	68 86	 3710	0.44
Methyl alcohol	20	1121.2	68	3678	
Methyl bromide	2	905	36	2968	
Methyl iodide	20 30	 815	68	 2673	0.213
Methylene bromide	24	971.2		3186	
Methylene chloride	23.5	1064	74	3490	
Methylene iodide	24	977.7	75	3207	
Milk	20		68		1.13
Molasses A, first	37.8 54.4		100 130		281 - 5070 151 - 1760
B, second	37.8 54.4		100 130		1410 - 13.2M 660 - 3.3M
C, blackstrap	37.8 54.4		100 130		2630 - 55M 1320 - 16.5M
Naphthalene	80		176		0.9
Naptha	25	1225	77	4018	
Neatsfoot oil	37.8 54.4		100 130		49.7 27.5
Nitrobenzene	20 23.8	 1462	68 75	 4795	1.67
Nitrogen	-188.9	744.7	-308	2443	
Nonane	20	1248	68	4093	
l-Nonene	20	1218	68	3995	
Nonene-n	-17.8		0		1.728

LIQUID	t≰ C	c(m/s)	t z F	c(ft/s)	cSt
	37.8		100		0.807
n-Octane	-17.8 20 37.8	 1192 	0 68 100	 3910 	1.266 0.645
Oil (lubricating)	10	1625	50	5330	
Oil of camphor	25	1390	77	4559	
Oleic acid	20	1442	68	4730	
Olive oil	21.7 37.8 54.4	1440 	71 100 130	4723 	 43.2 24.1
Oxygen	-182.9	912	-297	2991	
Palm oil	37.8 54.4		100 130		47.8 26.4
Paraldehyde	28	1197	82	3926	
Peanut oil	37.8 54.4		100 130		42 23.4
l-Pentadecene	20	1351	68	4431	
Pentane	20	1008	68	3306	
iso-Pentane	25	985	77	3231	
n-Pentane	-17.8 20 26.7	 1044 	0 68 80	 3424 	0.508 0.342
Petrolatum	54.4 71.1		130 160		20.5 15
Petroleum ether	15.6		60		31(est)
Phenol	100	1274	212	4179	
Potassium	150	1840	302	6035	
n-Propanol	20	1220	68	4002	
Propionic acid	20		68		1.13
n-Propyl acetate	26	1182	79	3877	
n-Propyl alcohol	20	1223.2	68	4012	

LIQUID	tz C	c(m/s)	t z F	c(ft/s)	cSt
Propylene glycol	21.1		70		52
Pyridine	20	1445	68	4740	
Quenching oil (typical)					100 - 120
Rapeseed oil	37.8 54.4		100 130		54.1 31
Rosin oil	37.8 54.4		100 130		324.7 129.9
Rosin (wood)	37.8 93.3		100 200		216 - 11M 108 - 4400
Rubidium	160	1260	320	4133	
Sesame seed oil	37.8 54.4		100 130		39.6 23
Silicon tetrachloride	30	766.2	86	2513	
Sodium	150	2500	302	8200	

LIQUID	tz C	c(m/s)	t z F	c(ft/s)	cSt
Sodium chloride (fused)	850	1991	1562	6530	
5%	20		68		1.097
25%	15.6		60		2.4
Sodium hydroxide (caustic soda) 20%	18.3		65		4.0
30%	18.3		65		10.0
Soya bean oil	37.8 54.4		100 130		35.4 19.64
Sperm oil	37.8 54.4		100 130		21 - 23 15.2
Sugar solutions Corn syrup 86.4 Brix	37.8 82.2		100 180		180Mcp 1750cp
84.4 Brix	37.8 82.2		100 180		48Mcp 800cp
82.3 Brix	37.8 82.2		100 180		17Mcp 380cp
80.3 Brix	37.8 82.2		100 180		6900cp 230cp
78.4 Brix	37.8 82.2		100 180		3200cp 160cp
Sugar solutions Sucrose 60 Brix	21.1 37.8		70 100		49.7 18.7
64 Brix	21.1 37.8		70 100		95.2 31.6
68 Brix	21.1 37.8		70 100		216.4 59.5
72 Brix	21.1 37.8		70 100		595 138.6
74 Brix	21.1		70		1210

LIQUID	tz C	<i>c(m/s)</i>	t≈F	c(ft/s)	cSt
	37.8		100		238
76 Brix	21.1 37.8		70 100		2200 440
Sulphur	130	1332	266	4369	

D-17

LIQUID	tz C	c(m/s)	t z F	c(ft/s)	cSt
Sulphuric acid 100%	20		68		14.6
95%	20		68		14.5
60%	20		68		4.4
Tar, coke oven	21.1 37.8		70 100		600 - 1760 141 - 308
Tar, gas house	21.1 37.8		70 100		3300 - 66M 440 - 4400
Tar, pine	37.8 55.6		100 132		559 108.2
Tar, road - RT-2	50 100		122 212		43.2 - 64.9 8.88 - 10.2
RT-4	50 100		122 212		86.6 - 154 11.6 - 14.3
RT-6	50 100		122 212		216 - 440 16.8 - 26.2
RT-8	50 100		122 212		660 - 1760 31.8 - 48.3
RT-10	50 100		122 212		4.4M - 13.2M 53.7 - 86.6
RT-12	50 100		122 212		25M - 75M 108 - 173
Tetralin	20	1484	68	4868	
Tin (molten)	240	2470	464	8102	
Toluene	20 30	 1275	68 86	 4182	0.68
o-Toluidine	22.5	1669	73	5474	
l-Tridecene	20	1313	68	4307	
Trielhylene glycol	21.1		70		40
Triethylamine	0	1189	32	3900	

LIQUID	tz C	c(m/s)	t	c(ft/s)	cSt
Turpentine	25 37.8 54.4	1225 	77 100 130	4018 	 86.6 - 95.2 39.9 - 44.3
l-Undecene	20	1275	68	4182	

D-19

LIQUID	tz C	c(m/s)	t z F	c(ft/s)	cSt
Varnish, spar	20 37.8		68 100		313 143
Water distilled	20	1482.9	68	4864	1.0038
fresh	15.6 54.4		60 130		1.13 0.55
sea					1.15
Water (sea) (surface, 3.5% salinity)	15	1507.4	59	4944	
Whale oil	37.8 54.4		100 130		35 - 39.6 19.9 - 23.4
Xylene hexafluoride	25	879	77	2883	
o-Xylene	20 22	 1352	68 72	 4435	0.93
Zinc	450	2700	842	8856	