

MoniSonic 4600

Ultrasonic transit time flow meter

INSTRUCTION MANUAL

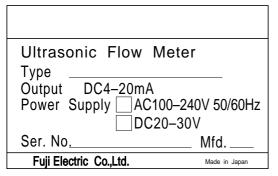
May 2005

Version MoniSonic 4600-e-INF-TN3FLV

PREFACE

We are grateful for your purchase of this ultrasonic flow meter.

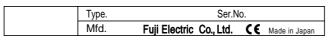
- First read this instruction manual carefully until an adequate understanding is acquired, and then proceed to installation, operation and maintenance of the converter (sensor) of the ultrasonic flow meter. Wrong handling may cause an accident or injury.
- The specifications of this flow meter will be changed without prior notice for further product improvement.
- Modification of this flow meter is strictly prohibited unless a written approval is obtained from the manufacturer. We will not bear any responsibility for a trouble caused by such a modification.
- This instruction manual shall be stored by the person who actually uses the flowmeter.
- After reading the manual, be sure to store it at a place easier to access.
- This instruction manual should be delivered to the end user without fail.


About ultrasonic flowmeter

The ultrasonic flowmeter in combination with the ultrasonic sensor mounted on the external wall of existing piping, is used to convert the amount of flow of a fluid flowing in the piping into a unified current signal and integrated pulse signal.

Check on type and specifications

The name of type is inscribed on the specification nameplate. Check the specification nameplate to make sure that type and specifications are correct as ordered (the nameplate is attached to the side of the converter, the upper side of the sensor cover (small type, large type) and the side of the frame (for high temperature).


(1) Specification nameplate

Converter

Ultrasonic Flow Meter	
Туре	
Ser.No	- ((
Mfd Fuji Electric Co., Ltd.	Made in Japan

Small and Middle type sensor

High temperature sensor

Ultrasonic Flow M	Vleter		
Ser. No	Mfd		
EEx m Ⅱ T6 (Tamb=-2 Vmax <u>≤</u> 200V Nemko	20°C to 60°C) 00ATEX054 X		
C E 0470	(€x) I 2 G		
Fuji Electric Co.,Ltd. 1, Fuji-machi Hino City, Tokyo 191-8502, Japan			
Converter (Use for explo	osion-proof sensors)		
Large type sensor (Expl	osion-proof type)		

Ultrasonic Flow Type FLW	Meter		
Ser. No		Mfd	
EEx m II T6 (Tamb= Vmax≦200V Nemk	-20°C to o 00ATI	60°C) EX054	х
C € 0470	Æx>	Ⅱ 2	G
Fuji Electric	Co.,Ltd.		
1, Fuji-machi Hino City, To	okyo 191-8	3502, Ja	apan
Small & Middle typ	be sen	sors	
(Explosion-proof t	ype)		

Ultrasonic Flow Meter

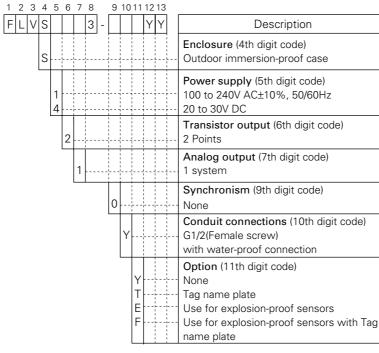
Fuji Electric Co., Ltd.

Large type sensor

CE

Made in Japan

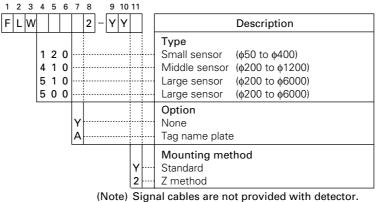
Type


Output _

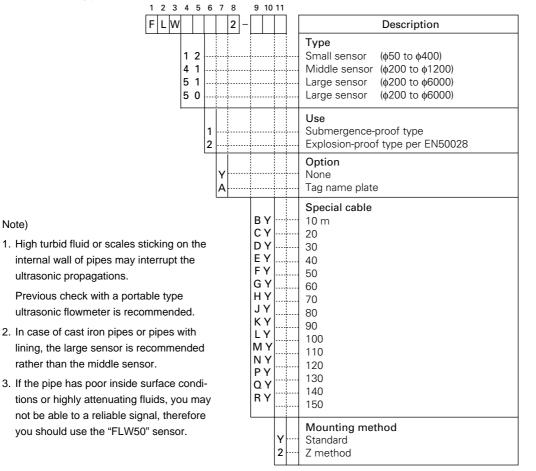
Supply _

Ser.No.

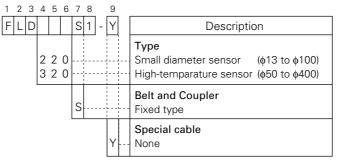
Mfd.


(2) Code symbols of converter

(Note) As for explosion-proof type, the converter should be located in safe area. See Installation instruction of Item 8.2.


(3) Code symbols of sensor

· Standard type



Signal cables are not provided with detector. Signal cable FLY should be ordered separately.

• Moulded type

· Small diameter and high-temperature sensor

(4) Code symbols of signal cable

1 2 3 4 5 6 7 8	
FLY 1	Description
	Type of sensor (4th digit code)
1	Small, middle and large sensor (FLW120/410/510)
2	Small dia. and high temp. sensor (FLD 22/32)
	Cable length (5, 6 and 7th digit)
0 0 5	5m
0 1 0	. 10 m
0 1 5	. 15 m
0 2 0	. 20 m
0 2 5	25 m
0 3 0	. 30 m
035	. 35 m
040	40 m
0 4 5	45 m
0 5 0	50 m
0 5 5	. 55 m
0 6 0	60 m
0 6 5	65 m 70 m
0 7 0	75 m
075	80 m
0 8 0	85 m
085	90 m
0 9 0	95 m
0 9 5	100 m
1 0 0	110 m
1 2 0	120 m
1 3 0	130 m
1 4 0	140 m
1 5 0	150 m

Note: No need to order signal cable of FLY when your ordering submergence-proof or explosion-proof type sensor.

A pair of cables is provided as one unit.

CAUTION ON SAFETY

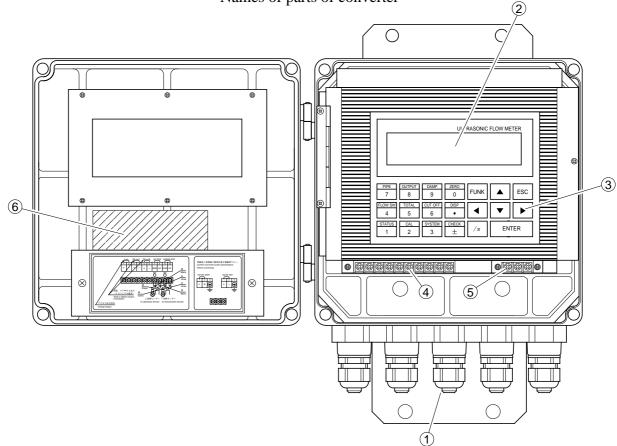
First of all, read this "Caution on safety" carefully, and then use the flowmeter in the correct way.

• The cautionary descriptions listed here contain important information about safety, so they should always be observed. Those safety precautions are ranked in 2 levels; DANGER and CAUTION.

Wrong handling may cause a dangerous situation, in which there is a risk of death or heavy injury.
Wrong handling may invite a dangerous situation, in which there is a possibility of medium-level trouble or slight injury or only physical damage is predictable.

	Caution on installation and wiring
	• The flowmeter should be installed in a place that meets the operating conditions shown in this instruction manual. Installation at an unsuited place may cause electric shock, fire or incorrect operation.
	• Install the flowmeter according to the instruction manual. Improper installation may lead to the cause of fall, trouble or incorrect operation.
	• When installing, make sure that the flowmeter interior is free from cable chips and other foreign objects to prevent fire, trouble, or incorrect operation.
	• Connect a power source of correct rating to prevent fire accidents.
	• Before making wiring work, be sure to turn OFF the power supply to prevent electric shocks.
	• Use wiring materials of correct rating to prevent fire accidents.

CONTENTS


PRE	EFA	СЕ		i
CAU	UTIO	ON ON S	SAFETY	vi
COI	NTE	NTS		vii
1.	OP	ERATIN	G PARTS AND THEIR FUNCTIONS	. 1
2. MOUNTING OF CONVERTER				. 2
	2.1	Selecti	on of mounting place	. 2
	2.2	Mount	ing method	. 2
	2.3	Outline	e diagram (unit : mm)	. 3
3.	WI	RING OI	F THE CONVERTER	. 5
	3.1	Before	wiring	. 5
	3.2	Wiring	·	. 5
	3.3	Treatm	ent of the wiring port	. 5
	3.4	Wiring	to terminals	. 6
4.	OP	ERATIO	N AND WORKS	. 7
	4.1	Before	operation	. 7
	4.2	Power	ON and status	. 7
5.	SET	TTING C	DF PARAMETERS	. 8
	5.1	Outline	e of operating procedures	. 8
	5.2	Descrip	ption of key operation	. 9
	5.3	List of	setting items	11
	5.4	Setting	of parameters	12
		5.4 (1)	Setting of piping specifications	12
		5.4 (2)	Setting of analog output range	14
		5.4 (3)	Setting of analog output limit	16
		5.4 (4)	Setting of burn-out	17
		5.4 (5)	Setting of damping	18
		5.4 (6)	Zero adjustment	19
		5.4 (7)	Setting of measurement display specifications	20
		5.4 (8)	Low flow cut	
		5.4 (9)	Setting of integrated output unit and constant	22
		5.4 (10)	Setting of integral preset value	
		5.4 (11)	Setting of integration switch	
		5.4 (12)	Selection of integral pulse width	
		5.4 (13)	Setting of flow switch	
		5.4 (14)	Setting of status output	
		5.4 (15)	Calibration of measured value	
		5.4 (16)	Switch of measuring unit	
		5.4 (17)	Switch of language (English/German/French/Japanese)	30

	5.4 (18)	Analog output check	31
	5.4 (19)	Analog output calibration	32
	5.4 (20)	Status output check	33
	5.4 (21)	Test mode	34
6.	MAINTEN	ANCE AND INSPECTION	35
	6.1 Mainte	enance	35
	6.2 Inspec	tion	35
7.	TROUBLE	SHOOTING	36
	7.1 How to	o confirm normal operation	36
	7.1 (1)	When checking by LCD indicator	36
	7.1 (2)	LCD indication when power turned ON	36
	7.1 (3)	Detail check for abnormal status	37
	7.1 (4)	Measurement data check	38
	7.2 Faults	and remedies	40
	7.2 (1)	LCD display abnormal	40
	7.2 (2)	Key abnormal	40
	7.2 (3)	Measured value abnormal	41
	7.2 (4)	Analog output abnormal	44
	7.2 (5)	Remedy for hardware fault	44
8.	SENSOR IN	NSTALLATION GUIDE	45
	8.1 Mount	ing of sensor	45
	8.1 (1)	Mounting procedure of sensor	45
	8.1 (2)	Selection of mounting place	46
	8.1 (3)	Selection of mounting method	47
	8.1 (4)	Processing of sensor mounting surface	48
	8.1 (5)	Determination of mounting position (with Z method for large and small types)	49
	8.1 (6)	Cable end treatment	50
	8.1 (7)	Grounding of explosion-proof sensor	50
	8.1 (8)	Connection of cable to small/middle sensor	51
	8.1 (9)	Mounting of small sensor on pipe	52
	8.1 (10)	Assembling procedure of the sensor	54
	8.1 (11)	Connection of cable to large sensor	55
	8.1 (12)	Mounting of large sensor on pipe	56
	8.1 (13)	Mounting of small diameter sensor on pipe	57
	8.1 (14)	Mounting of high temperature sensor on pipe	58
	8.2 Installa	ation instruction for explosion-proof sensor	59

APPENDIX 1.	SPECIFICATIONS A	\- 1
APPENDIX 2.	HOW TO MAKE GAUGE PAPER E	3-1
APPENDIX 3.	CHECK OF RECEIVED WAVE FORM	2-1
APPENDIX 4.	SPECIFICATIONS FOR SERIAL TRANSMISSION D)-1
APPENDIX 5.	COMPOSITION OF KEY OPERATION E	E-1
APPENDIX 6.	PIPING DATA	7-1

1. OPERATING PARTS AND THEIR FUNCTIONS

The names and functions of parts of the converter are as follows.

Names of parts of converter

Item	Description
① Wiring port	Wiring port for power cable and signal cable
2 Data indicator	Liquid crystal indicator for measurement data and set values
③ Key board	Used for setting the conditions of adjustments and measurements.
(4) Main board terminal block	Used for connecting signal cables from sensor. Used for connection of signal cables for analog output and status output.
(5) Power terminal block	Used for connecting power cable.
6 Parameter table	Used for entering setting data.

2. MOUNTING OF CONVERTER

2.1 Selection of mounting place

Install the converter at a place satisfying the following conditions.

- Ambient temperature does not exceed a range of -10°C to +60°C. When installing outdoors, attach a shade or put the converter in an outdoor panel to protect it from direct sunlight.
- Not exposed to moisture.
 Even an immersion-proof type is not protected against entry of water.
 Make arrangements so that water can be drained quickly.

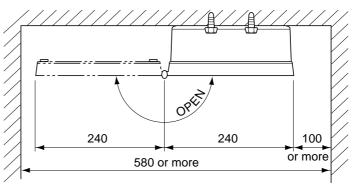


Fig. 2-1 Installation space (top view)

- ③ Not exposed to dust or corrosive gases.
- (4) Free from vibrations and shocks.
- (5) Space shown in Fig.2-1 is available for easy inspection and adjustment.

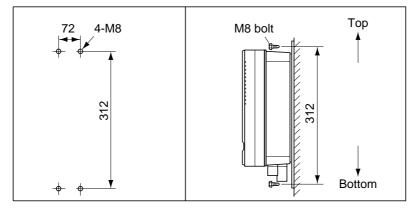
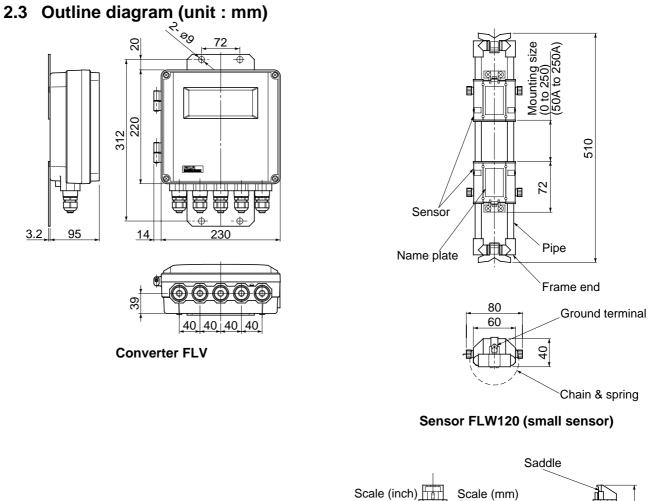
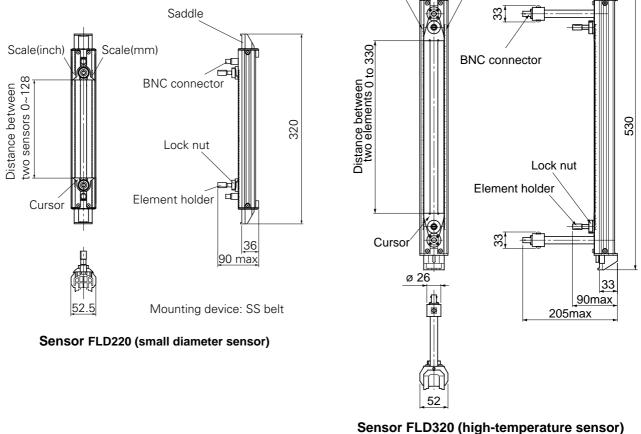
2.2 Mounting method

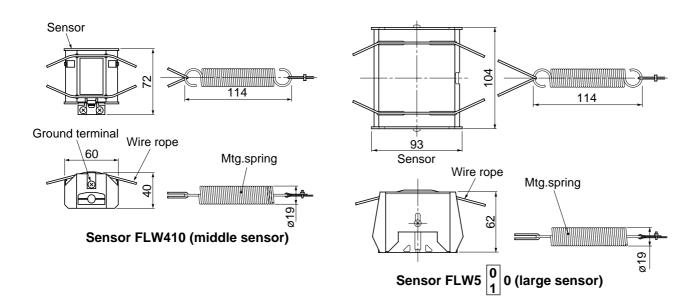
Wall mounting or 2B bypass stand mounting is available for the converter.

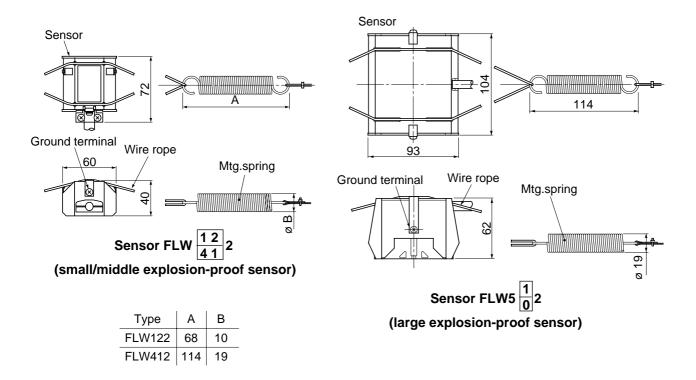
For wall mounting, use 4-M8 bolts.

Be sure to mount the converter at correct position as shown in Fig. 2-2.

Make a hole in the wall or the like according to the cutout dimensions shown in the diagram below, and mount the converter with M8 bolts.


Fig. 2-2 Mounting method


In case of 2B pipe standing type, use U bolts (M8) on the market.

Instruction Manual Version MoniSonic 4600-INF-TN3FLV-e

3. WIRING OF THE CONVERTER

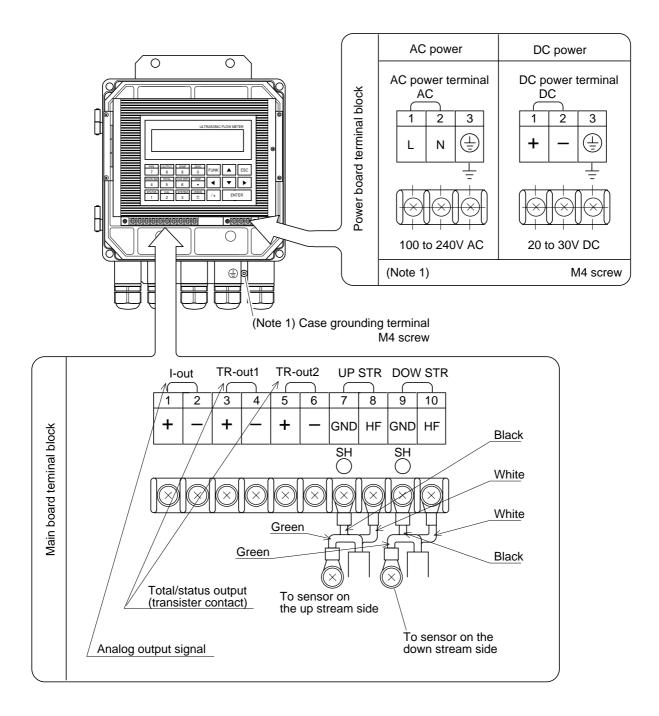
3.1 Before wiring

- ① **For signal cable between the sensor and converter, use double-shielded coaxial cables.** The coaxial cable should be refrained from connecting midway.
- ② The signal cable between the sensor and converter should be run in metalic conduits. To prevent the effects of induction noise, upstream and downstream signal cables should be wired as far away from power cable as possible.
- (3) An output signal cable should use shielded cable as much as possible.
- (4) To prevent the effects of noise, do not install signal cables together with power cable in the same duct.
- (5) A power cable is provided with earth wire, it should be connected to the ground.
- (6) As this instrument is not equipped with a power switch, be sure to mount a power switch on the instrument.
- \bigcirc Wiring ports should be closed when they are not ready to use.

3.2 Wiring

Use the following cables :

Power cable	:	3 or 2 core cabtyre cable, Nominal sectional area : 0.75mm ² or more, Finished outside diameter : ø11mm
• Output signal cable	:	2 core cable or multi-core cabtyre cable as needed. Finished outside diameter : ø11mm
• Cable between senso	r and	d converter : Signal cable specified by Code Symbols (High frequency coaxial cable with characteristic impedance of 50Ω) Finished outside diameter : ø7.3mm


3.3 Treatment of the wiring port

The converter is an immersion-proof type specified by JIS C0920 "Rules for water-proof tests of electromechanical instruments and wiring materials". However, if the converter is to be installed in a pit, air tightness treatment should be provided for the wiring port to prevent possible entry of moisture, dew condensation or immersion of water.

Waterproof measures should be taken by using waterproof gland or plica tube gland furnished with this instrument. A gland, which is not ready to be used, should be sealed by supplied cover.

3.4 Wiring to terminals

Cables should be connected as shown in the following diagrams.

Note 1) Power board terminal block (for power) and case grounding terminals are available for grounding terminals.

Be sure to earth either of them. (Class D, wiring)

4. OPERATION AND WORKS

4.1 Before operation

Check the following before starting operation.

1. Power

2. Wiring

- 2 Check of power board terminal block See Item 3.4
- ③ Check of grounding terminal

3. Piping

- ① Check that a piping is filled with fluid.
- 2 Check that there is no problem when water stops or flows.

4.2 Power ON and status

(1) Power specification

1 AC power

Use power supply of 100 to 240VAC $\pm 10\%$ (50/60 Hz).


2 DC power

A power of 20V to 30V DC is available.

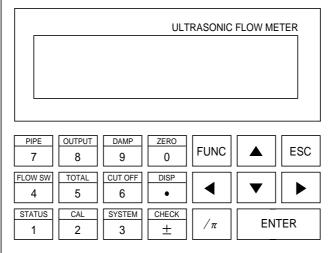
(2) Power ON

When the instrument is turned on, the following data are displayed on the LCD after making a self-check of the devices.

The numerical values and symbols being displayed are as described below:

5. SETTING OF PARAMETERS

5.1 Outline of operating procedures


Proceed to the following procedure before starting measurements.

Chapter 3	Installation and wiring of converter	
Chapter 4	Power ON	
5.4 (1)	Check of piping specification	NG 5.4 (1) Input of piping specification
Chapter 8	Installation of sensor Measurement error Measurement OK	apter 7 Troubleshooting
5.4 (6)	Zero adjustment	
Output specification setting System setting Integration specification setting Flow switch setting Measuring display specification setting Damping setting Low flow cut setting Output compensation setting Status output setting		 Note) If you requests adjustments before accepting the product, works surrounded with a broken line should be performed. Before adjustments, the followings are required. Wiring to the converter is completed. Cable between the sensor and converter is completed. The piping is filled with fluid. Fluid can be stopped or flowed in the piping.
Chapter 6	Maintenance and check	

5.2 Description of key operation

Note) When adjustment is performed or setting is changed in this chapter, be sure to enter parameters in the list attached to the converter.

Pressing the FUNC key enables you to perform the functions shown on the upper side of the tenkeys.

Description of key (1/2)

Name	Key display	Description
Ten-keys	0 to 9 , \bullet , \pm	To enter data and numeric values of piping specifications.
ENTER	ENTER	By pressing this key, numeric data and selected interac-
		tive items are set. In the interactive mode, questions are
		displayed.
◀ , ▶	◀ , ▶	To move the cursor to correct numeric values.
		Pressing the key allows the cursor to be moved the
		left.
		Pressing the key allows the cursor to be moved the
		right.
		Select the menu item display in an interactive message.
▲, ▼	▲, ▼	Pressing the \blacktriangle key allows the menu page to advance.
		Pressing the \checkmark key allows the menu page return.
ESCAPE (Stop)	ESC	To stop interactive operation.
FUNC. (Function)	FUNC	To perform the function inscribed on each ten-key.

Description of key (2/2)

Name	Key display	Description
$/\pi$	$/\pi$	By pressing this key, the circumstance of pipe, which has
		been entered, is converted into the outside diameter.
		(valid only when setting the outside diameter of pipe)
PIPE	FUNC PIPE	To enter the size and material of the sensor piping.
OUTPUT	FUNC	To set the condition of an analog output
(Analog output)	OUTPUT	(units, range, limit, burn-out)
DAMPING	FUNC	To set the damping.
	DAMP	
ZERO	FUNC ZERO	To use when zero adjustment is performed.
DISPLAY	FUNC DISP	Keys used to change items or unit system on the measure-
		ment display screen.
CUT OFF	FUNC	To set the low flow cut.
(Low flow cut)	CUT OFF	
TOTAL	FUNC	To set condition required for integration of flow rate.
(Integration)	TOTAL	(units, constant, preset value, integral switch, pulse width)
FLOW SW	FUNC	To set the measured high/low value switch
(Flow switch)	FLOW SW	
STATUS	FUNC	To set condition of status output (integration pulse, mea-
	STATUS	suring status)
CAL.	FUNC CAL	To compensate indication values of zero point and 100%
(Calibration)		point. (Current output is effected)
SYSTEM	FUNC	To switch the measuring unit system and language, or
	SYSTEM	confirm or calibrate analog output.
CHECK	FUNC CHECK	To display an error message and countermeasures when
		an error appears.
		(An error message is displayed on the upper-right of the
		LCD.)

5.3 List of setting items

Measurement screen —	Piping specifications (FUNC PIPE)	See Item 5.4 (1)
	Analog output — Analog output range (FUNC OUTPUT) Analog output limit Burn-out	See Item 5.4 (3)
	— Damping (FUNC DAMP)	See Item 5.4 (5)
	Zero adjustment (FUNC ZERO)	See Item 5.4 (6)
	— Measurement display specifications	See Item 5.4 (7)
	Low flow cut	See Item 5.4 (8)
	Integration Integrated output unit (FUNC TOTAL) Integral preset value Integral switch Integral pulse width	See Item 5.4 (9) See Item 5.4 (10) See Item 5.4 (11)
	Flow switch (FUNC FLOW SW)	See Item 5.4 (13)
	Status output	See Item 5.4 (14)
	Calibration of measured value	See Item 5.4 (15)
	System — Measuring unit (FUNC SYSTEM) – Language Analog output check Status output check Test mode	See Item 5.4 (17) See Item 5.4 (18) See Item 5.4 (19)

5.4 Setting of parameters

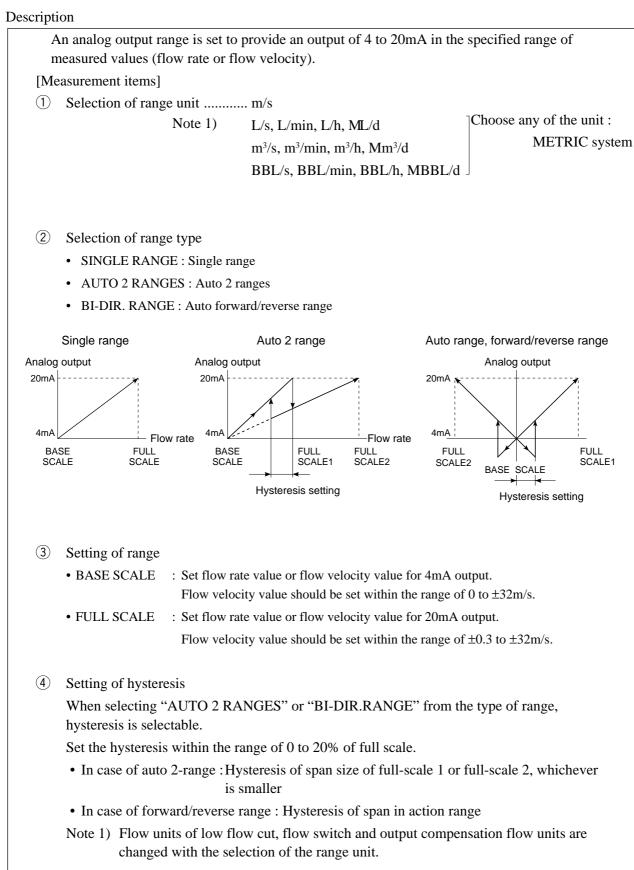
• Units are displayed in metric system.

5.4 (1) Setting of piping specifications

Description

• •	•	ment. The mounting dimension of the sensor is em should be entered according to the display.	
Item	Entry	Range or menu	
Outer diameter of pipe	Numeric value	13mm to 6100mm	
Material of pipe	Selectable	CARBON STEEL, STAINLESS STEEL, PVC, COPPER, CAST IRON, ALUMINUM, FRP, ASBE TOS, DUCTILE IRON, PEEK, PVDF, ACRYLIC, OTHERS*1	
Pipe wall thickness	Numeric value	0.1mm to 100mm	
Lining (with/without) and material	Selectable	NO LINING, TAR EPOXY, MORTAR, RUBBER, TEFLON, PYREX GLASS, PVC, OTHERS *1	
Type of fluid	Selectable	WATER, SEAWATER, OTHERS *1	
Kinematic viscosity coefficient of fluid	Numeric value	$0.001E-6m^2/s$ to 999.999 $E-6m^2/s * 2$	
Mounting method of sensor	Selectable	V METHOD, Z METHOD	
Type of sensor	Selectable	FLW12, FLD22, FLD32, FLW41, FLD12, FLW50, FLW51	
Transmission voltage of sensor	Selectable	1 TIME, 2 TIMES, 4 TIMES, 8 TIMES	

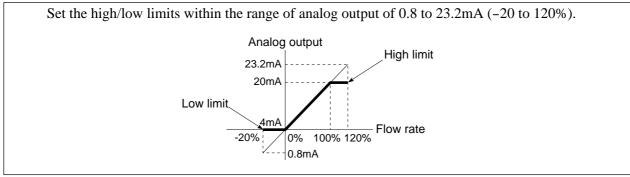
*1) Selection of "OTHERS"


Materials of piping and lining should be selected within the range of 1000 to 3700m/s of sound velocity and 500 to 2500m/s of flow velocity (see Appendix).

*2) Kinematic viscosity coefficient is expressed in water (20°C 1.003E-6m²/s) When more accurate data need be obtained or fluid other than water is selected, enter an appropriate data as needed from Appendix.

Operation (example)	Outside diameter: 114.3mm, pipe material: carb lining material: mortar, thickness: 1.25mm, fluid 1388m/s, kinematic viscosity coefficient: 1.129 method: V method, type: FLW12, transmission	d: heavy water, sound velocity: $\times 10^{-6}$ m ² /s, sensor mounting		
Key operation	Description	Display		
FUNC PIPE	The sensor mounting dimension is	SENSOR SPACING		
	displayed.	0.00 mm (V)		
▲ or ▼	Select "OUTER DIAMETER".	OUTER DIAMETER		
114.3, ENTER	Enter "114.3" with ten keys.	114. <u>3</u> mm		
✓ or ▶, ENTEI	R Select "CARBON STEEL".	PIPE MATERIAL CARBON STEEL		
4.5, ENTER	Enter "4.5" with ten keys.	WALL THICKNESS 4. <u>5</u> mm		
✓ or ▶, ENTER	Select :MORTAR".	LINING MATERIAL MORTAI		
1.25,ENT	ER Enter "1.25" with ten keys.	LINING THICKNESS 1.2 <u>5</u> mm		
I or ▶, ENTER	Select "OTHERS".	KIND OF FLUID OTHERS		
1 3 8 8, ENT	Enter "1388" with ten keys.	FLUID S.V. 138 <u>8</u> m/s		
1.129, ENTER	Enter "1.129" with ten keys.	VISCOSITY 1.129E-6 m2/s		
✓ or ▶, ENTER	Select "V METHOD".	SENSOR MOUNTING V METHOD		
✓ or ▶, ENTER		SENSOR TYPE FLW12		
No ▲ or ▶, ENTER	SELECT "8 TIMES".	TRANS. VOLTAGE 8 TIMES		
	The sonsor mounting dimension is displayed.	SENSOR SPACING 79.49 mm (V)		
ESC ESC	Press the key twice.	(Measurement display)		

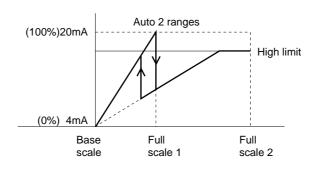
Note 3) When selecting the transmission voltage, generally choose "4 TIMES".


5.4 (2) Setting of analog output range

· · · ·	When setting the base scale to 0m ³ /h, full scale - 100m ³ /h and hysteresis to 5% in the forward.	
Key operation	Description	Display
FUNC OUTPUT		
or ▶, ENTER	Select "m3/h".	RANGE UNIT
I or ▶, ENTER	Select "BI-DIR. RANGE".	m3/h RANGE TYPE BI-DIR. RANGE
0, ENTER	Enter "0" with ten keys.	BASE SCALE <u>0</u> m3/h
100,ENTER	Enter "100" with ten keys.	FULL SCALE 1 100 m3/h
± 1 0 0, ENTE	$\overline{\mathbf{ER}}$ Enter "-100" with ten keys.	FULL SCALE 2 -10 <u>0</u> m3/h
5, ENTER	Enter "5" with ten keys.	RANGE HYSTERESIS 5
ESC ESC	Press the key twice.	(Measurement display)

5.4 (3) Setting of analog output limit

Description


Operation (example) Lo	w limit : -10% (2.4mA), high limit : 110%	(21.6mA)
Key operation	Description	Display
FUNC OUTPUT		
▲ or ▼	Select "OUTPUT LIMIT".	OUTPUT LIMIT
		LOW -20 %
± 10 , ENTER	Enter "–10" with ten keys.	OUTPUT LIMIT
		LOW -1 <u>0</u> %
1 0, ENTER	Enter "110" with ten keys.	
		OUTPUT LIMIT
		HIGH 11 <u>0</u> %
ESC ESC	Press the key twice.	
		(Measurement display)

• In case of AUTO 2-RANGE :

Low limit is limited to the small range, and high limit is limited to the large range.

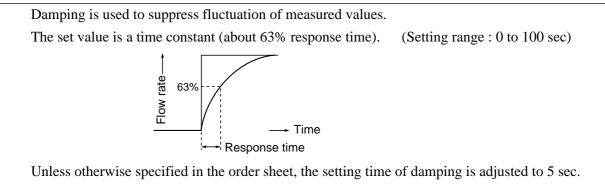
• In case of BI-DIR. RANGE :

The low/high limits are limited to the range of action.

5.4 (4) Setting of burn-out

Description

When the pipe is empty of fluid or when air bubbles are contained in fluid, the flow rate can not be measured correctly. In such a case, the analog output needs to be set to "HOLD", "HIGH" limit or "LOW" limit. A burnout timer is used to set the time needed for burnout. (Setting items)


- HOLD : Measured value is held
- UPPER : 120% output (23.2mA) is obtained.
- LOWER : -20% output (0.8mA) is obtained.
- ZERO : 0 % output (4.0mA) is obtained.
- NOT USED : Not used.
- Liquid crystal display : Measured value is held.
- Integrated pulse output : Output stops Note)
- Integration : Integration stops Note)

Note) Integrated pulse output and internal integration is integrated until the burnout timer is energized.

	en setting the burnout to the "HOLD" limit at onds.	nd burnout timer to 15
Key operation	Description	Display
FUNC OUTPUT		
▲ or ▼	Select "OUTPUT BURNOUT".	OUTPUT BURNOUT NOT USED
\bullet or \bullet , ENTER	Select "HOLD".	OUTPUT BURNOUT HOLD
15, ENTER	Enter "15" with ten keys.	BURNOUT TIMER 15 sec
		(Measurement display)

5.4 (5) Setting of damping

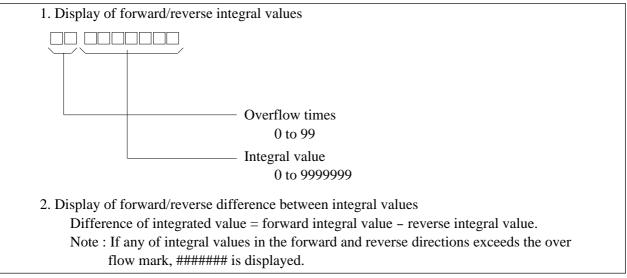
Description

Operation (example) Cha	inge of set value to 20 sec.	
Key operation	Description	Display
FUNC DAMP		
20, ENTER	Enter "20" with ten keys.	DAMPING
		2 <u>0</u> sec
		(Measurement display)

5.4 (6) Zero adjustment

Description

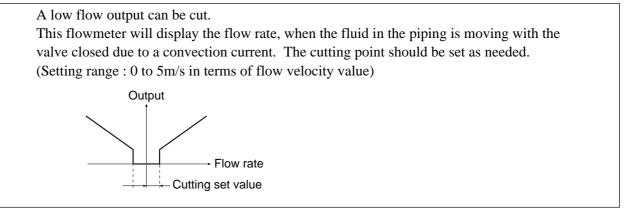
1
Zero point of measured value is adjusted.
(Setting items)
• SET ZERO : Stop the flow of fluid and adjust zero point.
The zero pont is the state of measurement at set point.
• CLEAR : This setting is used when fluid will not stop flowing.
Adjusted zero point is cleared.


Operation (example)	Zero	point adjustment when fluid is in stop mode	2.		
Key operation		Description	Display		
FUNC ZERO					
or ▶, ENTE	R	Select "SET ZERO".	ZERO MODE		
			SET ZERO		
			Zero Set Adjust! *********		
			Wait a moment.		
			(Measurement display)		

5.4 (7) Setting of measurement display specifications

Description

cription					
Select measured value from	the follo	owing.			
① Setting of measurement dis	play 1st	line			
Select any one from the	e followi	ing 7 types for the	1st line display	у.	
F: TOTAL : For	ward inte	egral value			
		gral value			
		verse difference bet	ween integral	values	
F: TOTAL PULSE : For	ward inte	egral pulse counter			
R : TOTAL PULSE : Rev	verse inte	gral pulse counter			
FLOW VELOCITY : Inst	tantaneou	us flow velocity [m	/s]		
RANGE % : Rat	io of ana	log output to range	2		
② Setting of decimal measure	ment dis	play on 2nd line			
On the second display			isplayed.		
Select one from the fol					
	•	/d, m ³ /s, m ³ /min, m	3/h Mm ³ /d		
		BBL/h, MBBL/d		metric	system)
③ Setting of decimal point po			v rate display		
Setting of digit display			· ·		
Select any one from the		-			
Position of decin		0	Range of da	to displ	937
000000000.			-	-	-
0000000.0	•	-9999999999999999999999999999999999999		to	999999999.
000000.0	•	-99999999.9 to		to to	99999999.9 9999999.99
00000.00	•	-9999999.99 to		to to	999999.999
0000.000	•	-99999.9999 to		to	99999.9999
000.0000	•	-9999.99999 to		to	999.99999
00.00000	•	-99.999999 to		to	99.999999
00.00000	•		o 0.0000000	10	9.9999999


Display of integral value

Operation (example) Display instantaneous flow velocity and instantaneous flow unit in m3/h, and instantaneous flow rate in 3 digits after decimal point.		
Key operation	Description	Display
FUNC DISP \bullet or \blacktriangleright , ENTER \bullet or \blacktriangleright , ENTER	Select "VELOCITY". Select :m ³ /h".	1: DISPLAY KIND VELOCITY 2: FLOW UNIT m3/h
\bullet or \bullet , ENTER	Select "00000.000".	2: DECIMAL POINT 00000.000 m3/h (Measurement display)

5.4 (8) Low flow cut

Description

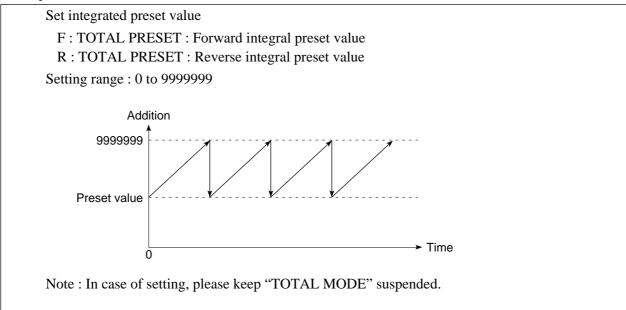
Operation (example) Sett	ing of cutting point to 0.05m/s.	
Key operation	Description	Display
FUNC CUT OFF	Ester "0.05" with ten here	
	Enter "0.05" with ten keys.	CUT OFF 0.0 <u>5</u> m/s
		(Measurement display)

5.4 (9) Setting of integrated output unit and constant

Description		
Integrated output unit	it is set to integrate measurement value (flow	rate)
Just after setting of r	neasured value is completed, the pulse count	er begins integration by
clearing the previous	s integrated value.	
1 Integrated unit	Select one of the following 8 kinds of inte	gral units.
mL, L, m ³ , km ³ ,	Mm ³ , mBBL, BBL, kBBL (metric system)	
	anging the integrated unit, integral constant v cleared.	value and integral preset
Integral constant		
	eaches the value set by the integral constant,	÷ .
	asurement screen, and the integral pulse cour	iter provides an output of 1
pulse.	000000	
Setting range : 0 to 9	999999	
	grated output of 100m ³	
Key operation	Description	Display
FUNC TOTAL		TOTAL MODE
▲ or ▼, ENTER	Display "TOTAL MODE".	TOTAL STOP
✓ or ▶, ENTER	Select "m3".	TOTAL UNIT
		m3
100, ENTER	Enter "100" with ten keys.	TOTAL RATE
		10 <u>0</u> m3
ESC	Display "TOTAL MODE".	TOTAL MODE
	Display TOTHE MODE .	TOTAL STOP
		TOTAL MODE
● or ▶, ENTER	Select "TOTAL RUN".	TOTAL RUN
ESC ESC	Press the key twice.	(Measurement display)

Integral mode

TOTAL STOP : Integration is stopped.


TOTAL START : Integration is started (integral parameter can not be changed at a time of start). TOTAL RESET : Integral value is set to the integral preset value, and integration is stopped.

When the flowmeter is restored from power interruption, it will be operated in the integral mode that was set before power interruption.

[Note : If measurement is abnormal, refer to burnout setting for integration.]

5.4 (10) Setting of integral preset value

Description

Operation (example) Forward direction : 1000m ³ , reverse direction : 2000m ³		
Key operation	Description	Display
FUNC TOTAL		
▲ or ▼	Select "F : TOTAL PRESET".	F:TOTAL PRESET
		0 m3
	Enter "1000" with ten keys.	F:TOTAL PRESET
		100 <u>0</u> m3
ENTER	Select "R : TOTAL PRESET".	R:TOTAL PRESET
		0 m3
2000, ENTER	Enter "2000" with ten keys.	R:TOTAL PRESET
		200 <u>0</u> m3
ESC ESC	Press the key twice.	(Measurement display)

5.4 (11) Setting of integration switch

Description

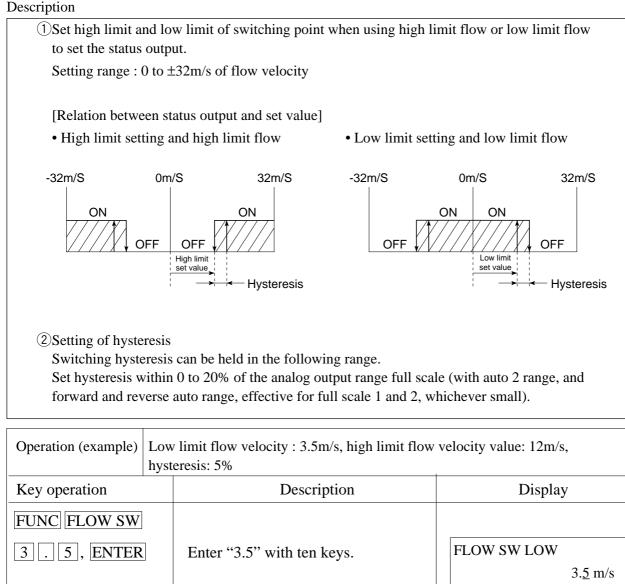
When an integral value exceeds the set value, the status output is provided. F : TOTAL SW : Forward integration switch R : TOTAL SW : Reverse integration switch Setting range : 0 to 9999999 Note) When setting the status output, integration switch is valid only when "F : TOTAL SW" or "R : TOTAL SW" is set. Integration Setting value STATUS OFF Note : In case of setting, please keep "TOTAL MODE" suspended.

Operation (example) Set value of forward integration switch :50000m ³		
Key operation	Description	Display
FUNC TOTAL	Select "TOTAL SW".	F: TOTAL SW
		0 m3
50000, ENTER	Enter "50000" with ten keys.	F: TOTAL SW 5000 <u>0</u> m3
ESC ESC	Press the key twice.	(Measurement display)

5.4 (12) Selection of integral pulse width

Description

When setting status output, set the pulse width to use "F:TOTAL" or "R:TOTAL". The following 2 types can be selected according to the counter connected.


- 50msec
- 100msec

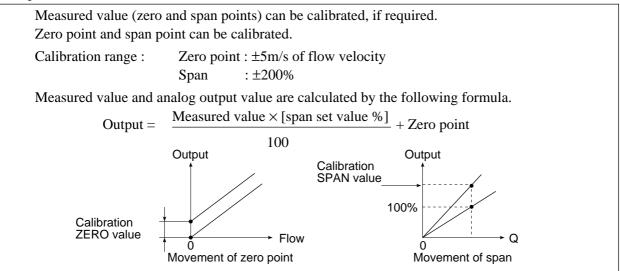
Note : In case of setting, please keep "TOTAL MODE" suspended.

Operation (example) Pulse width : 100msec.		
Key operation	Description	Display
FUNC TOTAL		
or 🔻	Select "Pulse width".	PULSE WIDTH
		50 msec
\blacktriangleleft or \blacktriangleright , ENTER	Select "100msec".	PULSE WIDTH
		100 msec
ESC ESC	Press the key twice.	(Measurement display)

5.4 (13) Setting of flow switch

Description

FLOW SW HIGH 1 2, ENTER Enter "12" with ten keys. 12 m/sFLOW SW HYS. 5, ENTER Enter "5" with ten keys. 5 % (Measurement display)


5.4 (14) Setting of status output

	-		
• When the status of setting or integral pulse is outputted, the contents of output is set.			
1	NOT USED	: No output	
2	SIGNAL ERROR	: ON at abnormal measurement	
3	F : TOTAL PULSE	: Forward flow integral pulse	
(4)	R : TOTAL PULSE	: Reverse flow integral pulse	
(5)	FLOW SW HIGH	: ON when the flow rate is over the high limit set by flow switch.	
6	FLOW SW LOW	: ON when the flow rate is below the low low limit set by flow switch.	
7	F : TOTAL ALARM	: ON when the flow rate is over the forward flow integration switch.	
8	R : TOTAL ALARM	: ON when the flow rate is below the reverse flow integra- tion switch.	
9	F : TOTAL OVERFLOW	: ON when the forward flow integral value overflows.	
10	R : TOTAL OVERFLOW	: ON when reverse flow integral value overflows.	
11	FULL SCALE 2	: ON at FULL SCALE 2 RANGE in analog output range status.	
(12)	R : FLOW DIRECTION	: ON when the flow direction is reverse.	
13	RANGE OVER	: ON when the set value of the output span exceeds the range of -10 to 110%, or integral pulse output exceeds 5 pulse/sec.	
14	BACKUP ERROR	: ON when the backup non-volatile memory is abnormal.	
	 Setting of status output pulse mode NORMAL : effective when status output is ON. REVERSE : effective when status output is OFF. 		

• • • •	en setting the forward integral pulse and co de. Channel 1 is outputted to the TR out1.	ntact output in the normal
Key operation	Description	Display
FUNC STATUS		
I or ▶, ENTER	Select "CHANNEL 1".	STATUS CHANEL
		CHANNEL 1
◀ or ▶, ENTER	Select "F : TOTAL PULSE".	STATUS SEL. : CH1
		F : TOTAL PULSE
\bullet or \bullet , ENTER	Select "NORMAL".	STATUS MODE : CH1
		NORMAL
ESC	(Continued on next page)	

	Then setting the forward integral pulse and con- ode. Channel 2 is outputted to the TR out2.	ntact output in the reverse
Key operation	Description	Display
✓ or ▶, ENTER	Select "CHANNEL 2".	STATUS CHANEL CHANNEL 2
✓ or ▶, ENTER	Select "F : TOTAL ALARM".	STATUS SEL : CH2 F : TOTAL ALARM
● or ▶, ENTER	Select "REVERSE".	STATUS MODE : CH2
ESC ESC	Press the key twice.	(Measurement display)

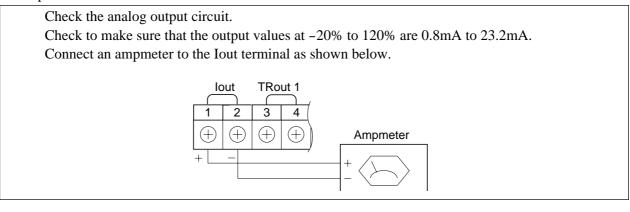
5.4 (15) Calibration of measured value

Operation (example) Calibration of zero point to -0.5m/s and span point 105%				
Key operation	Description	Display		
FUNC CAL				
\pm 0 . 5 , ENTER	Enter "-0.5" with ten keys.	CALIBRATION ZERO		
		-0. <u>5</u> m/s		
1 0 5, ENTER	Enter "105" with ten keys.	CALIBRATION SPAN		
		10 <u>5</u> %		
		(Measurement display)		

5.4 (16) Switch of measuring unit

r · · ·		
Measuring units c	can be set in the two systems, metric system and inch system.	
(Setting contents)		
• METRIC (met	tric system)	
	Pipe dimension mm	
	Flow velocity unitm/s	
	Flow rate unit L/s, L/min, L/h, ML/d m ³ /s, m ³ /min, m ³ /h, Mm ³ /d BBL/s, BBL/m, BBL/h, MBBL/d	
	Integration unit mL, L, m ³ , km ³ , Mm ³ , mBBL, BBL, kBBL	
• ENGLISH (inc	ch system)	
	Pipe dimensioninch	
	Flow velocity unit ft/s	
	Flow rate unit gal/s, gal/m, gal/h, Mgal/d ft ³ /s, ft ³ /m, ft ³ /h, Mft ³ /d BBL/s, BBL/m, BBL/h, MBBL/d	
	Integration unit gal, kgal, ft ³ , kft ³ , Mft ³ , mBBL, BBL, kBBL	

Operation (example) Cha	ange of measurement unit to inch system	
Key operation	Description	Display
FUNC SYSTEM ◀ or ▶ ,ENTER	Select "ENGLISH".	SYSTEM OF UNITS ENGLISH
ESC ESC	Press the key twice.	(Measurement display)

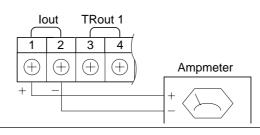

5.4 (17) Switch of language (English/Japanese/German/French)

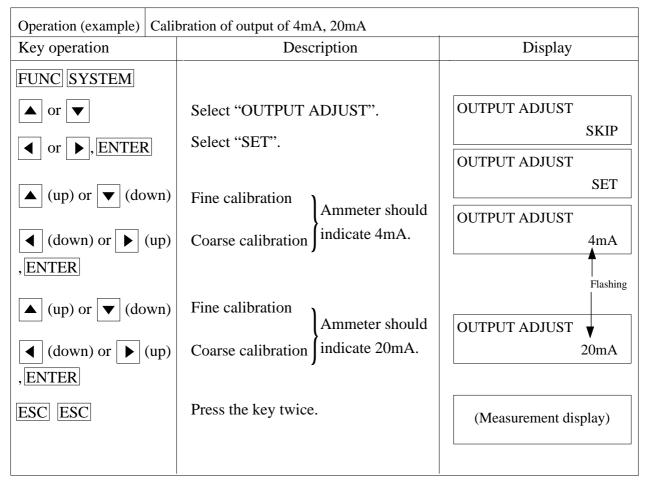
Description

4 kinds of language, English, Japanese (Katakana), German and French can be selected on this display, at the time of setting.

Operation (example) Selection of English display				
Key operation	Description	Display		
FUNC SYSTEM				
▲ or ▼	Select "LANGUAGE".	LANGUAGE		
		JAPANESE		
✓ or ▶, ENTER	Select "ENGLISH".	LANGUAGE		
ESC ESC	Pross the key twice	ENGLISH		
	Press the key twice.	(Measurement display)		

5.4 (18) Analog output check

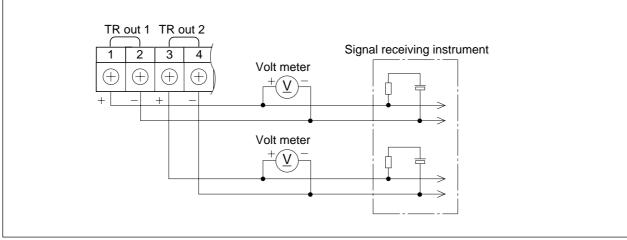

Operation (example) Check of analog output of 20mA				
Key operation	Description	Display		
FUNC SYSTEM	Select "OUTPUT CHECK".	OUTPUT CHECK 0 %		
100, ENTER	Enter "100" with ten keys. Output changes after pressing ENTER. [100% (20mA) check]	OUTPUT CHECK 10 <u>0</u> %		
ESC ESC	Press the key twice.	(Measurement display)		


5.4 (19) Analog output calibration

Description

The analog output circuit is calibrated so that the measured flow rate is set to provide an output of 4mA in the base scale and 20mA in the full scale.

Calibration should be performed by connecting an ampmeter to Iout terminal as shown below.



Note : After calibration is completed, set the calibration mode to Skip.

5.4 (20) Status output check

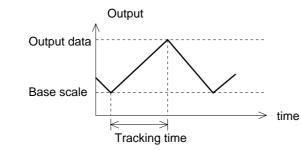
Description

Perform check of status output for ON-OFF operation. Status output is an open collector. A check is performed by connecting a voltmeter to terminals, TRout 1 and TRout 2 as shown below.

Operation (example) Check of status channel 1.				
Key operation	Description	Display		
FUNC SYSTEM				
▲ or ▼	Select "STATUS CHK.".	STATUS CHK.		
		Channel 1		
✓ or ▶, ENTER	Select "CHANNEL 1".	STATUS CHECK		
		Channel 1		
or b	Select "ON or OFF".	STATUS CHECK		
		ON		
ESC ESC ESC	Press the key 3 times .	(Measurement display)		

- Note: Status output changes depending upon "NORMAL" or "REVERSE" specified under the status mode conditions.
- Note: If the status output check is finished with STATUS CHECK ON, "STATUS CHECK ON" is started when attempting to perform "STATUS CHECK".

5.4 (21) Test mode


Description

The test mode is used to check for integrated conditions and action of the flow switch, etc. by entering measuring flow rate simulately.

With base scale set to 0% and full scale to 100%, an arrival time from previous value to target value can be set as shown below:

Data setting range : 0 to $\pm 120\%$

Tracking time setting range : 0 to 900sec

Note : During measurement, set the test mode to "NOT USED".

Operation (example) To s 1009	et the tracking time to 15 seconds so that th 6.	ne target value reach from 0 to
Key operation	Description	Display
FUNC SYSTEM		
▲ or ▼	Select "TEST MODE".	TEST MODE
		NOT USED
✓ or ▶, ENTER	Select "SETTING".	TEST MODE
		SETTING
[1], [0], [0], [ENTER]	Enter "100" with ten keys.	INPUT DATA
	-	100%
1, 5, ENTER	Enter "15" with ten keys.	TRACKING TIME
		15 sec
		(Measurement display)

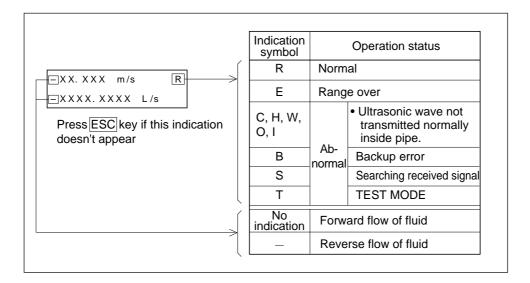
6.1 Maintenance

(1) LCD display unit

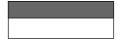
Expected service lift of LCD is 7 years. It is recommended that LCD should be replaced with new one in about 5 years since it is put into operation, or it may offer deteriorated contrast.

[Replacement procedure]

- 1 Power OFF
- 2 Remove the connector from the key panel and replace the LCD display unit (see parts list).
- 3 Assembly
- (4) Power ON
- (5) Check for normal operation


6.2 Inspection

(1) Daily check


Confirm the converter is operating normally by using the LCD display unit in accordance with Item "7.1 How to confirm normal operation".

7.1 How to confirm normal operation

7.1 (1) When checking by LCD indicator

7.1 (2) LCD indication when power turned ON

In case of no indication System abnormal (CPU stopped) Contact supplier.

7.1 (3) Detail check for abnormal status

Stat	Status display at the upper right of the measurement screen is detailed as follows:			
(Status display)		(Contents of display)	(Detailed contents)	
R	:	NORMAL		
С	:	CAL. ERROR	Check for piping input data.Turn ON/OFF the power.	
Н	:	RECEIVED SIGNAL ERROR	Check for air bubbles in pipeCheck for particles in pipe	
W	:	WINDOW ERROR	• Check for piping input data.	
0	:	RECEIVED SIGNAL OVERFLOW	• Check for the sensor mounting method.	
Ι	:	NO RECEIVED SIGNAL	 Check for piping input data. Check for sensor installation. Check for cable connections. Check for type of sensor. 	
E	:	RANGE OVER	Check for output setting.Check for integral constant.Check zero point.	
В	:	BACKUP ERROR	• Non-volatile memory fault.	
S	:	SERCHING RECEIVED SIGNAL	• Please wait now.	
Т	:	TEST MODE	• Test mode running.	

Operation (example) It appears at the upper right of the measurement screen.				
Key operation	Description	Display		
FUNC CEHCK	(Contens of display)	I : NO RECEIVED SIGNAL		
ENTER	(Detailed contents)	CHECK PIPE DATA		
	(Detailed contents)	CHECK SENSOR MOUNT		
	(Detailed contents)	CHECK CABLE CONNECT		
	(Detailed contents)	CHECK SENSOR TYPE		
ESC ESC	Press the key twice.	(Measurement display)		

7.1 (4) Measurement data check

	ata (10 kinds) under measurement are dis ormal measurement : All the data, (1)	•	ayed. rough (10), are displayed in real time.
			on of (7), (9) and (10) are "zero" or "hold".
(1)	Fluid acoustic velocity (Cf)		Fluid acoustic velocity due to temperature change. Refer to Appendix 6.
(2)	Propagation time (T0)	:	Average value of propagation time of ultrasonic receive signal in forward and reverse direction: T0 = (T1+T2)/2
(3)	Forward direction time (T1)	:	Propagation time of ultrasonic receive signal in forward direction (Fig. 7-1), total time of Tw, Tp, Tl and Tf in Pu \rightarrow Pd direction
(4)	Reverse direction time (T2)	:	Propagation time of ultrasonic receive signal in reverse direction (Fig. 7-1), total time of Tw, T Tl and Tf in Pd \rightarrow Pu direction
(5)	Propagation time difference (ΔT)	:	Difference in propagation time of ultrasonic receive signal between forward and reverse directions $\Delta T = T2-T1$
(6)	Delay time (τ)	:	Delay propagation time; time required for ultra sonic signal to propagate into sensor and pipin until send signal is received (Fig. 7-1) $\tau = Tw+Tp+Tl$
(7)	Fluid angle (θf)	:	Fluid incident angle; angle of ultrasonic signal bending in fluid (Fig. 7-1)
(8)	Reynolds number (Re)	:	Estimation of flow velocity distribution and compensation of flow rate
			Re = Flow velocity $v \times$ tube inside diameter D. Dynamic viscosity factor v
(9)	Wave strength	:	Sensitivity of ultrasonic receive signal; sensitivity of 0.45 or more can be measured, less than 0.45 needs to increase the power of send signal voltage.
(10)	Regulated value of propagation time	:	Propagation time based on logic value at 20°C

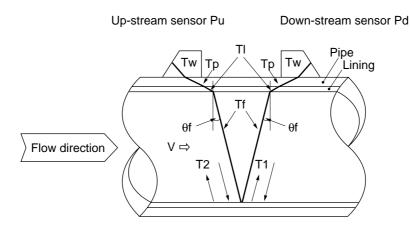


Fig. 7-1 V-method measurement diagram

Operation (example) Data	a display (example)	
Key operation	Description	Display
FUNC $/\pi$ 1	Display of fluid acoustic velocity (Cf)	SOUND SPEED 1465.373 m/s
◀ or ►	Display of propagation time (T0)	TOTAL TIME 482.00524 μsec
	Display of propagation time (T1) in forward direction	FORWARD TIME 482.00800 μsec
	Display of propagation time (T2) in reverse direction	REVERSE TIME 481.99744 μsec
	Display of propagation time difference (ΔT)	DELTA TIME 3.50341 nsec
	Display of delay propagation time (τ)	DELAY TIME 27.04046 µsec
	Display of fluid incident angle (θf)	THETA 22.934 °
	Display of reynolds number (Re)	REYNOLDS NO. 5204
	Display of wave strength	SIGNAL STRENGTH 0.72
	Display of regulated value of propatation time	TOTAL TIME (CAL) 490 μsec
ESC or ENTER		(Measurement display)

7.2 Faults and remedies

7.2 (1) LCD display abnormal

Status	Cause		
No indication ap-	 Power is not turned ON. Power voltage is low. Fuse is burnout. 		
pears.		Take remedy in "7.2 (5) Remedy for hardware fault"	
	• DC power supply polarity is connected reversely.		
	• Power voltage is low.		
Dark indication on		Take remedy in "7.2 (5) Remedy for hardware fault"	
upper side.	• DC power supply polarity is connected reversely.		
		Take remedy in "7.2 (5) Remedy for hardware fault"	
Random indication			
	• Ambient temperature lo	w. (less than −10°C) ➡ Increase the temperature.	
Unclear display	• LCD indicator is worn of	out. ➡ Replace the LCD.	
	• Ambient temperature is	high. (60°C or more) ➡ Decrease the temperature.	
Whole is dark			

7.2 (2) Key abnormal

Status		Cause
No response at press of input key	• Hardware fault. →	Take remedy in "7.2 (5) Remedy for
Specific keys can not		hardware fault"
be operated.		
Key operation is		
different from that		
defined.		

7.2 (3) Measured value abnormal

ily.
place iin- id 5D
at
crease
cause, d
int of
or ghtly oosi-
l with eline,
or to
he ipeline.
s.
pump
of the
of e.
doesn't ll
place
,
/e

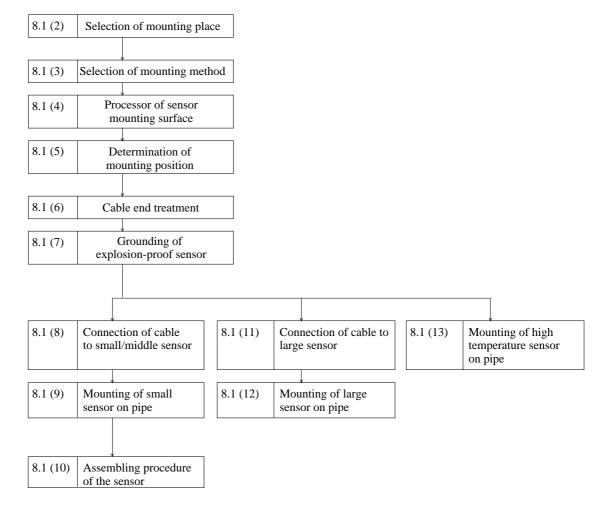
Status	Cause	Remedy
(Continued)	⊙ Turbidity is high.	
	 Turbidity is higher than inflow water contamination or return sludge. Scale deposits on the inside of old pipe 	 Change sensor mounting from V method to Z method. Move sensor to a place of smaller
	 Thick lining Mortar lining is several ten millimeters thick 	diameter on the same pipeline. →
	 ○ Separation of lining ☐ This is gap between lining and ² 	• Relocate sensor to another place or pipe line.
	pipe.	_ →
	Sensor is mounted on bent or tapered pipe.	Mount sensor on a straight pipe.
	 3. Effect of external noise • There is a radio broadcast station nearby. • Measurement conducted near a passage of vehicles or electric cars. 	
	 Mounting of sensor is improper Mounting dimensions Sensor is separated from pipe 	 correct position. Press sensor so it is
	4. Hardware fault	➡ Refer to Item "7.2(5) Remedy for hardware fault".
Measured value not zero when fluid stops flowing.	• Fluid forms a convection inside the pipe.	$ \rightarrow This is normal. $
	• Zero point adjustment	 ➡ • Readjust the zero point after fluid has stopped flowing.
	• Pipe is not full of water or it is empty of water when water stops flowing.	 ➡ This is normal. • The value may vary at Item "5.4(4) Setting of output at abnormal measurement".

Status	Cause	Remedy
Error in measured value	 Input piping specifications differ from the actual ones. Scale deposits on old pipe 	 Error of about 3% occurs when inner diameter differs by 1%. Input the correct specifications Input scale as a lining.
	• Length of straight pipe is inad- equate. (should be at least 10D upstream and 5D downstream.)	 Change the sensor to another mounting position (upstream of disturbing objects) No disturbing objects in flow within 30D upstream without pump, valve, combined pipe, etc. Try mounting the sensor at various angles versus the pipe section, and mount it where average value is
	• Pipe is not filled with fluid or sludge is deposited in the pipe.	 → Occurs particularly where sectional area is small. • Move sensor to a vertical pipe.

7.2 (4) Analog output abnormal

Status	Cause	Remedy
Current output is not matched though indication value is not 0.	Range setting is not performed.	• Set.
Output is 0mA.	Cable is disconnected.	
Output is below 4mA when indication is 0.	Zero adjustment of analog output has deviated.	• Adjust the analog output.
Output is greater than 20mA.	E is displayed on LCD indicator. Note)	 Range over: Reset analog output range data.
	Span adjustment is incorrect.	• Adjust the analog output.
Indication is changed but analog output remains the same.	Output load is greater than \blacksquare 1k Ω .	 Reduce the load to 1kΩ or less.
Indication does not agree with analog output.	Zero or span of analog output has deviated.	• Adjust the analog output.
Analog output doesn't change even after it has been adjusted.	Hardware falut	Contact manufacturer.

Note: When the base scale is not set to 0 within the range of an analog output, the flow display may not be matched with the analog output.


7.2 (5) Remedy for hardware fault

When hardware is in trouble after following "6. Maintenance and inspection" and "7. Trouble-shooting", details of trouble and self-check should be notified.

8.1 Mounting of sensor

8.1 (1) Mounting procedure of sensor

Mount the sensor on the pipe, and perform the following works in order before making measurement.

In case of explosion-proof type sensors, the following special conditions should be taken into account when installing them:

Special Conditions for Safe Use:

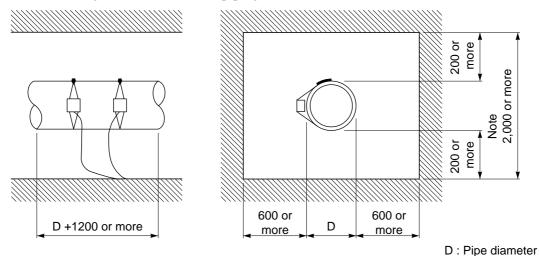
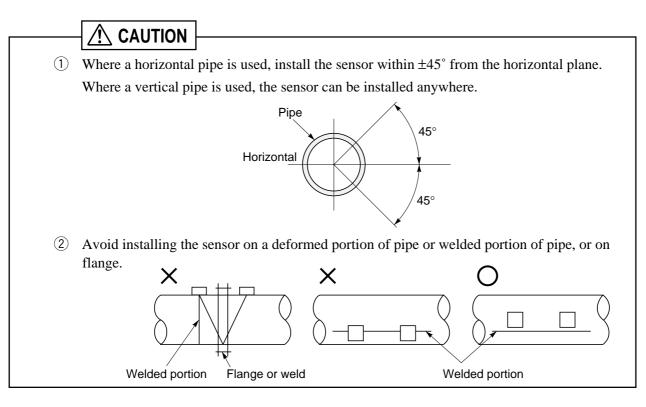
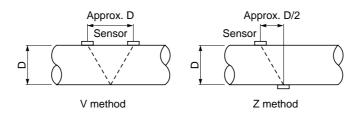
- (1) The flow sensors shall only be used together with the Converter FLV which incorporates an internal fuse according to document TD531469. The fuse is rated 2A, 250V and 1500A breaking capacity. The prospective short circuit current at the power supply connection point for the Converter shall not exceed 1500A.
- (2) The flow sensors have been tested with low impact energy (4 joule) and shall only be used in areas with low risk of mechanical damage.
- ③ The sensors have permanently connected cables. The cable end shall be connected with certified equipment according to the types of protection listed in EN 50014 or in the safe area.

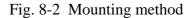
8.1 (2) Selection of mounting place

Mounting place for the sensor, i. e. conditions of piping where flow rate is measured, has considerable influence on measurement accuracy.

A place satisfying the following conditions should be selected.

- (1) A place where there is a straight pipe portion of 10D or more on upstream side and of 5D or more on the downstream side.
- 2 A place where there are no factors which disturb the flow (pumps, valves, etc.) within 30D on upstream side.
- ③ Pipe must be filled up with fluid. No bubbles should be contained.
- (4) Make sure that a maintenance space is provided around the piping where the sensor is mounted. (See Fig. 8-1.)
 - Note) A space should be provided so that maintenance work can be made with workers standing on both sides of the piping.


Fig.8-1 Space required for mounting sensor

8.1 (3) Selection of mounting method

There are two ways for mounting the sensor, the V method and the Z method (see fig. 8-2).

The Z method should be used in the following cases.

- Where a mounting space is not available (as shown in the figure above, the mounting dimension with the Z method is about half of that with the V method).
- When measuring fluid of high turbidity such as sewage.
- When the pipe has a mortar lining.
- When the pipe is old and has a thick accumulation of scale on its inner wall.

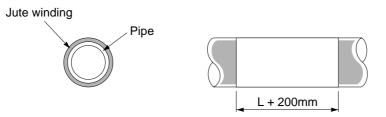
Selection standard

For a large size sensor with inside diameter of more than 300 mm, the Z method is recommended for mounting.

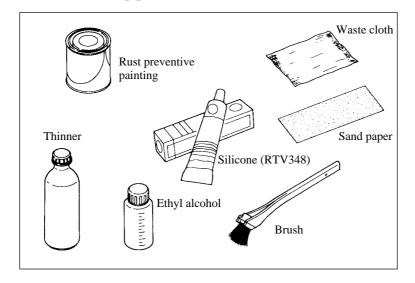
Sensor

Small sensor Type : FLW12	Z method V method	
Middle sensor Type : FLW41	Z method V method	
Large sensor Type : FLW5	Z method V method	
Small diameter sensor Type : FLD22	V method	
High temperature sensor Type : FLD32	V	

13 25 50 100 150 200 250 300 1000 1200 3000 6000 600 400


: Range noted in specifications Inside diameter (mm) Range specified with piping material

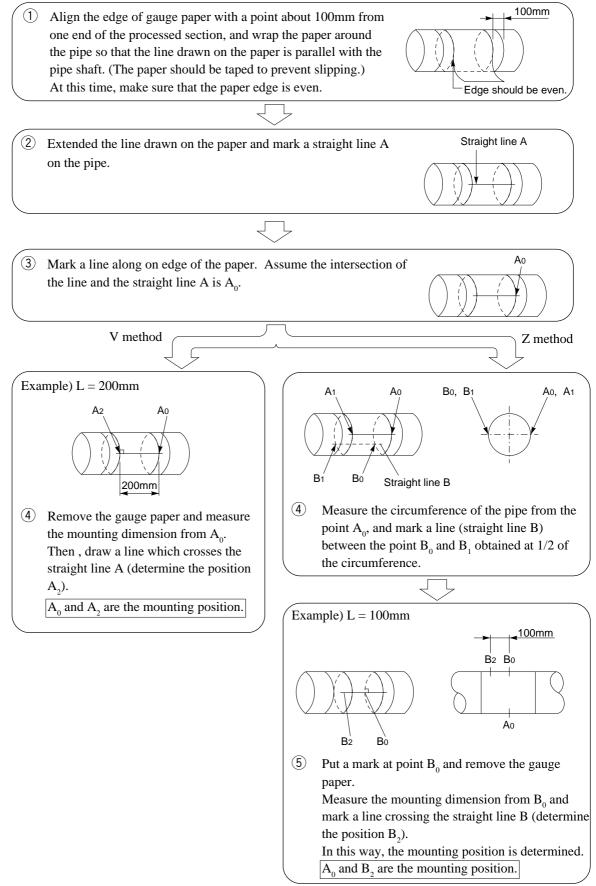
(FRP, PVC or other plastic materials)


8.1 (4) Processing of sensor mounting surface

Using thinner and/or sandpaper, remove pitch, rust and unevenness over a width of (L) + 200mm on the pipe circumference where the sensor is mounted.

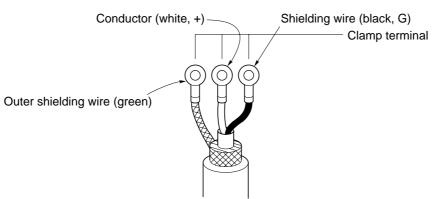
Note) If there is a jute winding on the pipe circumference, remove it and carry out the above processing.

Large size sensor (FLW5) is attached to the following accessories. Use for surface treatment of pipes.



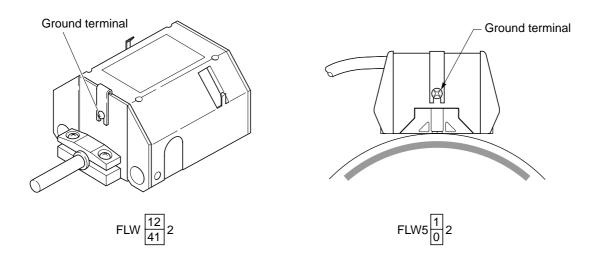
Name	Quantity	Application
• Rust preventive painting	1	Applied to detector or related parts for rust prevention
• Ethyl alcohol	1 bottle	Used for surface treatment of pipes and degreasing of transmitting surface
• Sand paper	1 pc	Used for removing rust from pipe surface or used for making surface smooth
• Brush	1	
• Waste cloth	1 sheet	
• Thinner	1 can	Used for remove pitch from piping surface
• Silicone	1 tube	Used for mounting sensor or for molding sensor terminal block.

8.1 (5) Determination of mounting position (with Z method for large and small types)

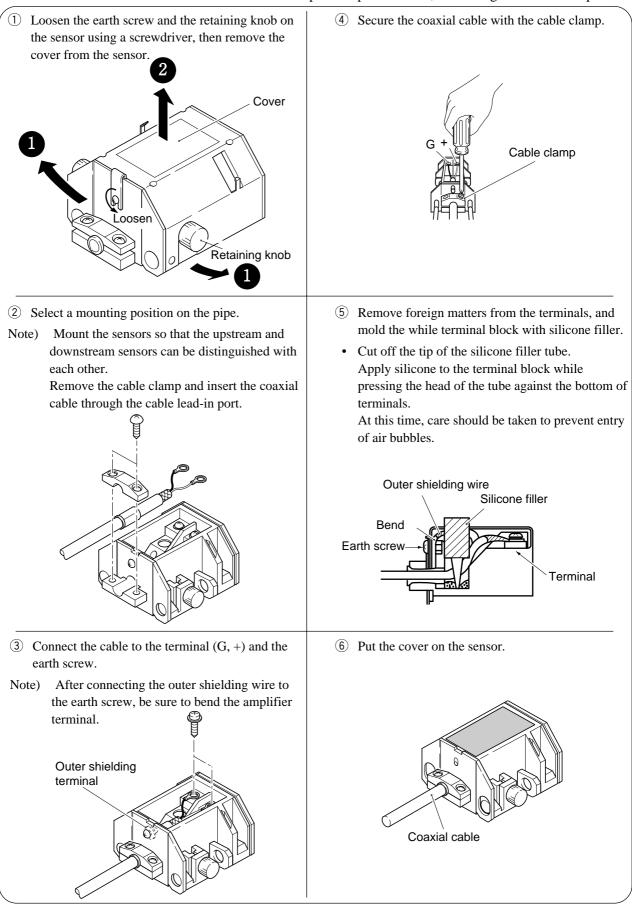

Carry out the following to determine the mounting position.

Gauge paper is necessary for this work. (Refer to Appendix 1. "How to make gauge paper".)

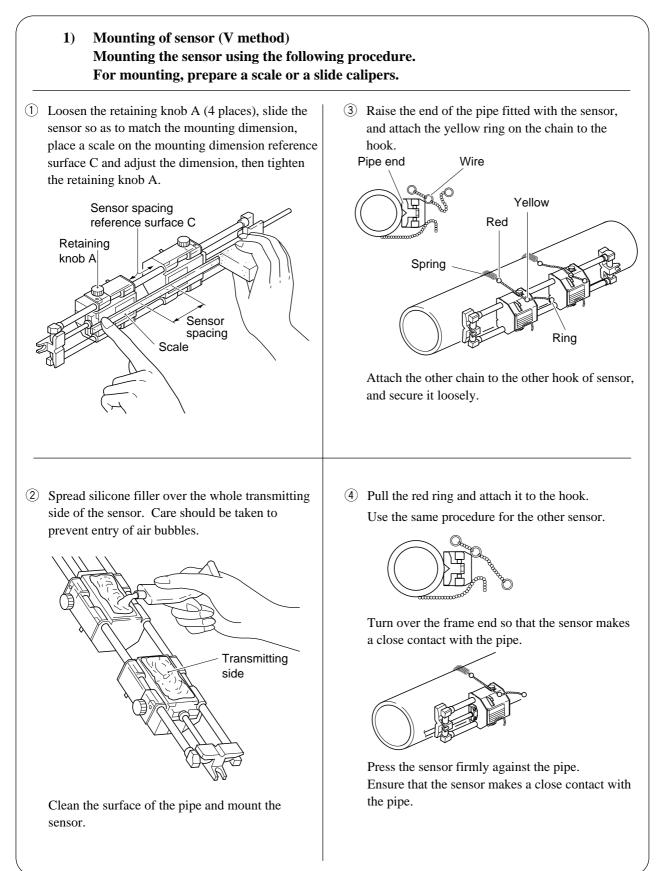
8.1 (6) Cable end treatment

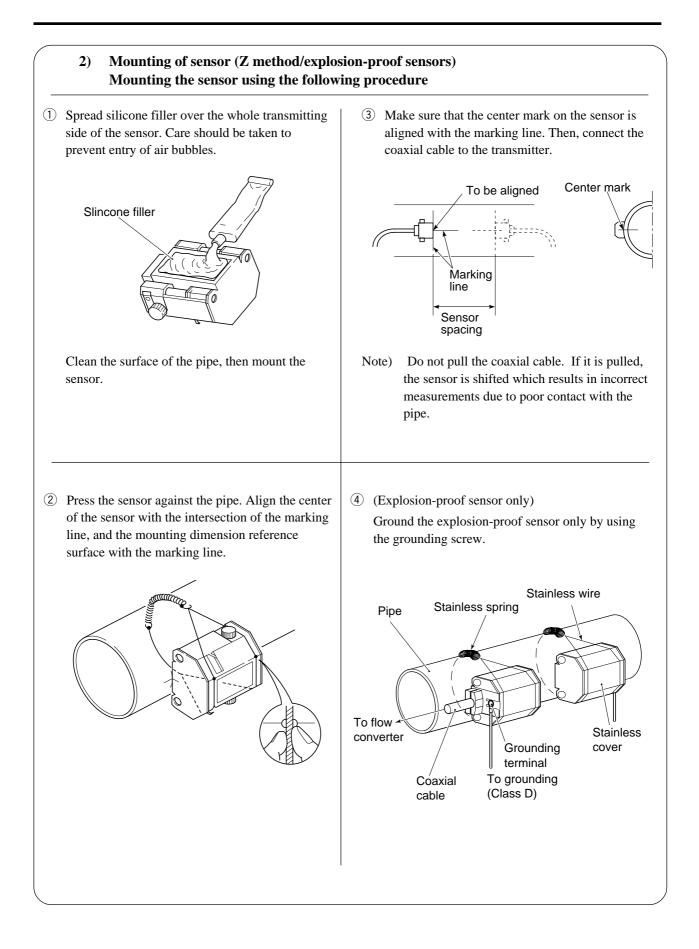

The end of coaxial cable is treated at the factory prior to delivery. If the cable needs to be cut before use, the conductor and the shielding wires should be treated using clamp terminals.

Note) When cutting the coaxial cable, make sure that the upstream side and the downstream side are the same in length.


8.1 (7) Grounding of explosion-proof sensor

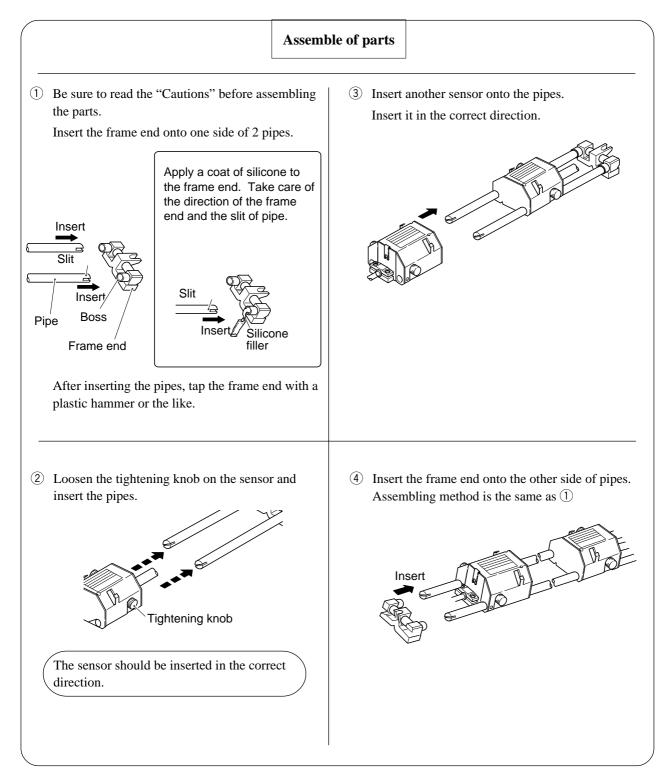
When installing the explosion-proof sensor, be sure to ground the metal cover by means of a ground terminal (Class D).


8.1 (8) Connection of cable to small/middle sensor


Since molded terminal unit is used for the explosion-proof sensor, the wiring work is not required.

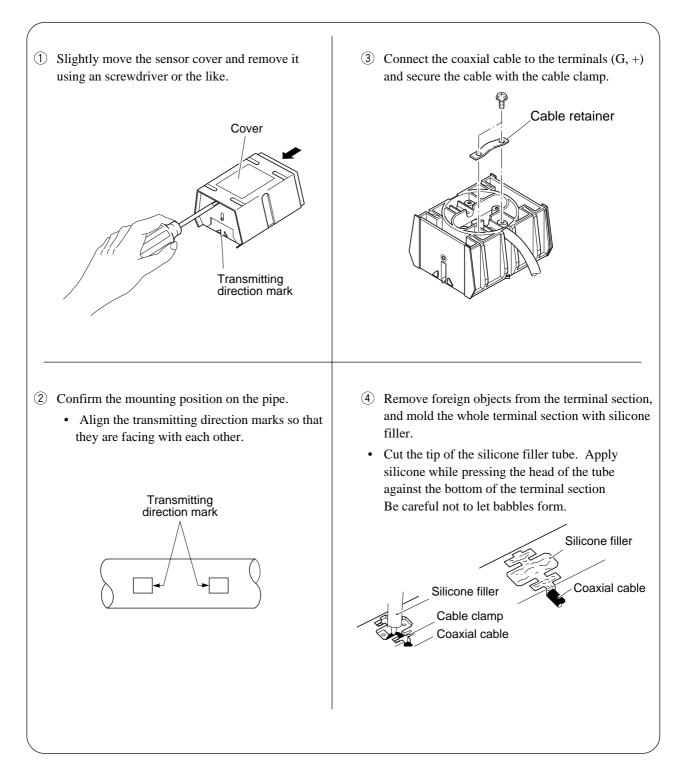
8.1 (9) Mounting of small sensor on pipe

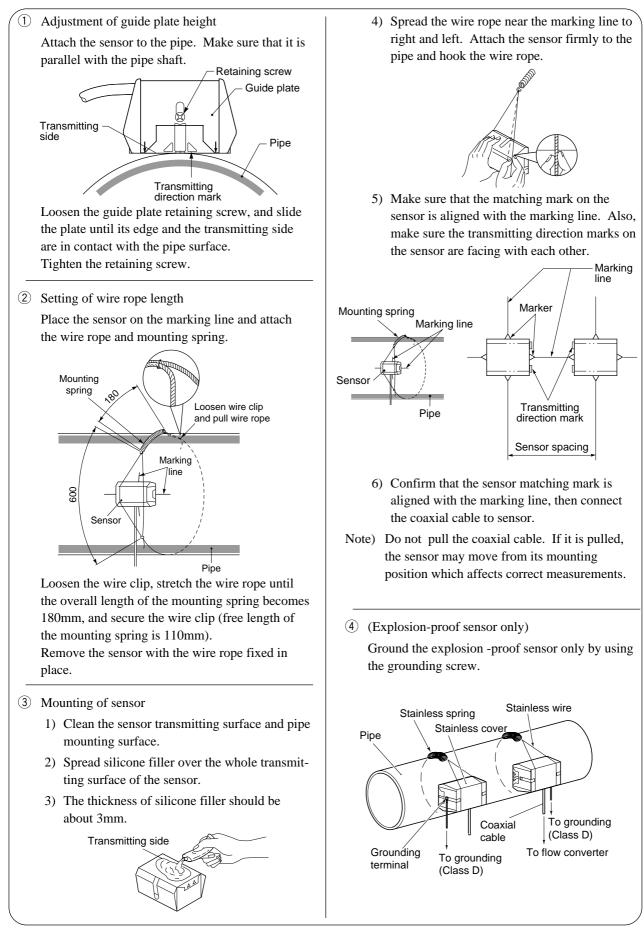
The small type sensor is mounted on pipe with a diameter of ϕ 50 to 250 (V method) or ϕ 150 to 400 (Z method) for measurements.



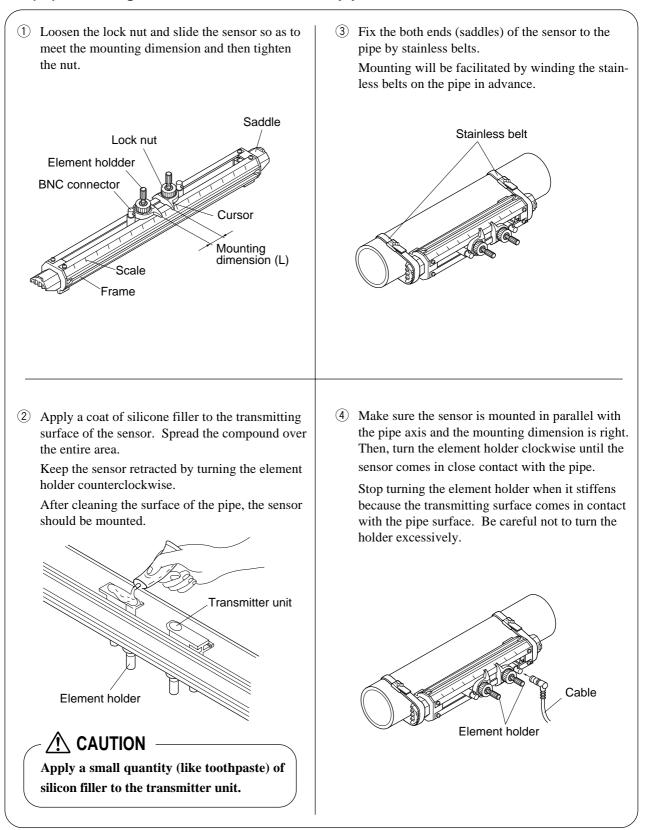
8.1 (10) Assembling procedure of the sensor

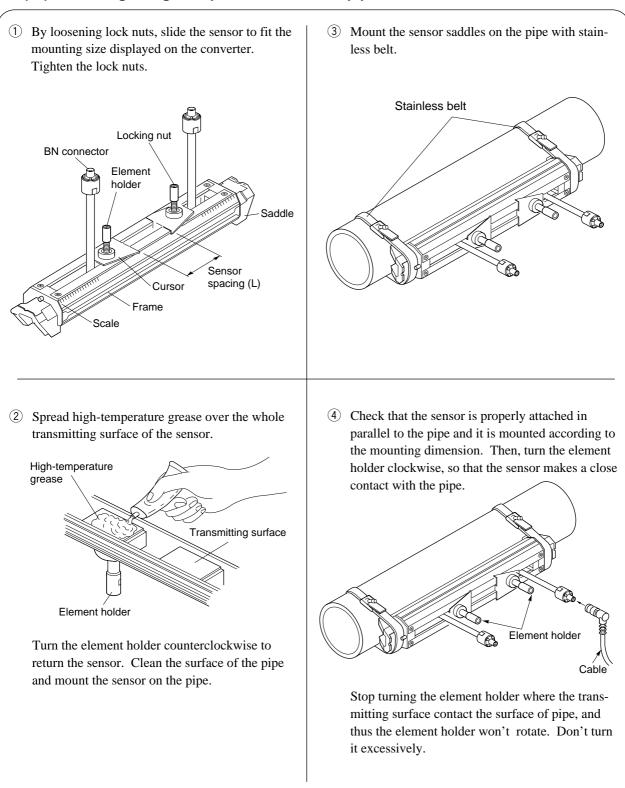
When the small type sensor (FLW121) is shipped with cables of more than 10m in length, it is delivered, disassembled since cable weight is applied to the stand or piping of the sensor during shipment.


Follow the procedure given below.

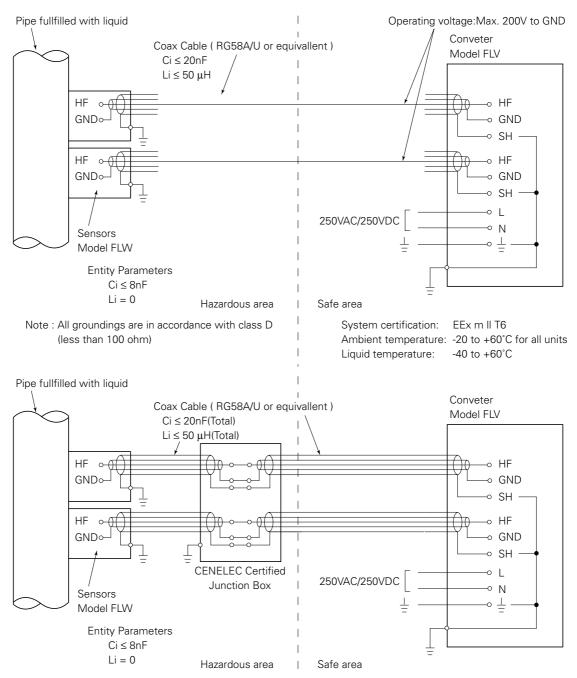

Note) After assembling the sensor, leave it at room temperature for a day to harden the filler (to obtain the required assembling strength).

8.1 (11) Connection of cable to large sensor


Since molded terminal unit is used for the explosion-proof sensor, the wiring work is not required.


8.1 (12) Mounting of large sensor on pipe

Instruction Manual Version MoniSonic 4600-INF-TN3FLV-e



8.1 (13) Mounting of small diameter sensor on pipe

8.1 (14) Mounting of high temperature sensor on pipe

Note : Any certified junction box conforming to the types of protection listed in EN50014 can be used to relay the co-axial signal cables.

(1) Specifications Operational specifications

• System configuration	: The system is composed of a sensor (Model FLW2 or FLD1) and a converter (Model FLV3)
	As for explosion-proof type, the converter should be located in safe area.
 Application 	: Liquid flow through which ultrasonic signal can be transmitted
	(Water, sea water, oil and fluid of unknown sound velocity)
	Turbidity; 10000deg(mg/L) or less
	Fluid temperature;
	-40 to +80°C for small (FLW12), middle (FLW41) and large sensor (FLW5)
	-40 to +60°C for explosion-proof sensors (FLW1, 4 & 5)
	-40 to +100°C for small diameter sensor (FLD22)
	-40 to $+200^{\circ}$ C for high temperature sensor (FLD32)
	Type of flow;
	Well-developed turbulent or laminar flow in a full-filled pipe
• Measurable flow pipe	: Size; 13mm to 100mm dia. with small diameter sensor (FLD22)
	50mm to 400mm dia. with small sensor (FLW12) and high temp. sensor (FLD32)
	200mm to 1200mm dia. with middle sensor (FLW41)
	200mm to 6000mm dia. with large sensor (FLW5)
	Material; Carbon steel, SS, cast iron, PVC, FRP, asbestos, copper, aluminum, etc.
	Lining; Tar epoxy, mortar, rubber, or others
	Straight pipe length (min);
	$10 \times D$ upstream and $5 \times D$ down stream required (D: Pipe diameter)
	Refer to JEMIS-032 for details.
	JEMIS: Japan Electric Measuring Instruments Manufactures' Association's standard.
• Velocity	: 0 to ±32m/s (bidirectional flow)
• Power supply	: Two models are availble
	100 to 240V AC \pm 10% 50/60Hz, or 20 to 30V DC
• Power consumption	: Approx. 20VA
• Maximum cable lengt	n for sensor: 150m
Ambient Temperature	: Converter ; $-10 \text{ to } +60^{\circ}\text{C}$
	Sensor ; $-20 \text{ to } +60^{\circ}\text{C}$
• Ambient humidity	: 90%RH or less.
Hazardous condition	: Nemko 00ATEX0054X
	Ex. II 2G, EExm II T6, Tamb=60°C per CENELEC Std. EN50014 & EN50028 for explosion-proof sensors FLW1, 4 & 5 combined with the converter FLV specific to them.

• Grounding	: Class D (less than 100 ohm) in case of need As for explosion-proof type, groundings of sensors and converter should
	be done.
Function/performan	ce specifications
 Analog output signal 	: One 4 to 20mA DC current output
	Max. load resistance $1k\Omega$
• Digital status output	: 2 transistor outputs available
	Open collector output; 30V DC, 0.1A
	Configurable to provide following information selected.
	– Total pulse
	– Flow switch
	– Over flow
	– Range change-over
	– Flow direction
	– Range over
	– Memory alarm
	– Receiving signal abnormal
 Measuring accuracy 	: Pipe size/13mm to under 50mm
	± 0.03 m/s for flow rate: under 2m/s
	$\pm 0.75\%$ to $\pm 1.5\%$ of rate for flow rate: 2m/s to 32m/s
	Pipe size/50mm to under 300mm
	± 0.02 m/s for flow rate: under 2m/s
	$\pm 0.5\%$ to $\pm 1.0\%$ of rate for flow rate: 2m/s to 32m/s
	Pipe size/300mm up to 6000mm
	± 0.01 m/s for flow rate: under 1m/s
	$\pm 0.5\%$ to $\pm 1.0\%$ of rate for flow rate: 1m/s to 32m/s
	(Note) Reference conditions are based on JEMIS-032.
Response time	: 0.5s or less
 Communication interf 	ace: RS232–C equivalent
	Baud rate: 2400 to 9600bps
	Distance: 15m max.
	Following information can be sent.
	– Velocity
	– Flow rate
	– Total
	– Alarm output status
 Indicator display 	: LCD with back light, 16 letters 2 lines
• Display language	: English, German, French or Japanese (Katakana) selectable

• Flow rate display function:

Display of velocity and flow rate (with flow direction) are selectable, Max: 8 digits

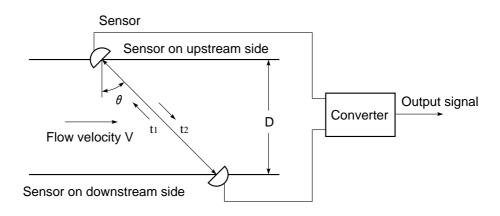
	Metric system	Inch system
Velocity	m/s	ft/s
Flow rate	L/s, L/min, L/h, ML/d, m ³ /s m ³ /min, m ³ /h, Mm ³ /d, BBL/s, BBL/min, BBL/h, MBBL/d	gal/s, gal/min, gal/h, Mgal/d, ft ³ /s, ft ³ /min, ft ³ /h, Mft ³ /d, BBL/s, BBL/min, BBL/h, MBBL/d

Unit: Metric/Inch system selectable

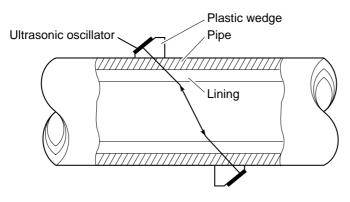
Note : The "gal" means US gal.

• Total value display function:

Display of forward or reverse total, are selectable, Max: 9 digits Unit; Metric/Inch system, selectable

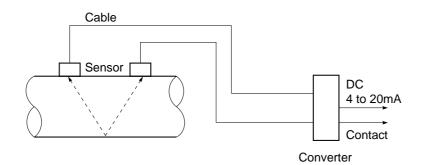

		Metric system	Inch system	-	
	Total	mL, L, m ³ , km ³ , Mm ³ , mBBL, BBL, kBBL	gal, kgal, ft ³ , kft ³ , Mft ³ , mBBL, BBL, kBBL	_	
Configuration	The flowmeter is fully configurable from front keyboard by menu-driven software				
 Zero adjustment 	: Two methods are available				
	Set zero/Manual zero adjustment for zero flow				
• Damping for analog output and indication:					
	0 to 100g configurable				

0 to 100s, configurable

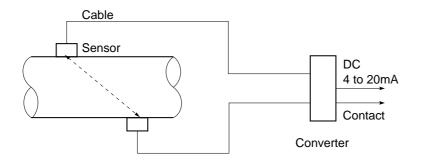

• Low flow cut-off : 0 to 5m/s, configurable

(2) Principle of measurement

With ultrasonic pulses propagated diagonally from the upstream and downstream sides, flow rate is measured by detecting the time difference obtained by the flow of fluid.

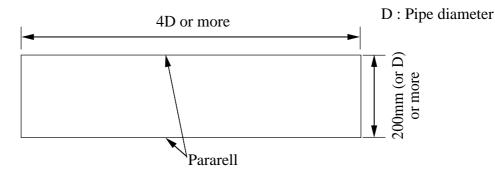


(3) Mounting of sensor

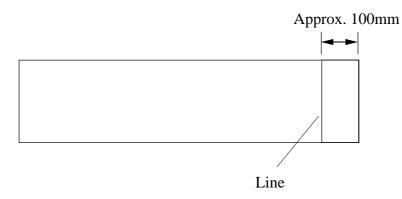


(4) Construction

(1) Single-measuring-path system (V method)

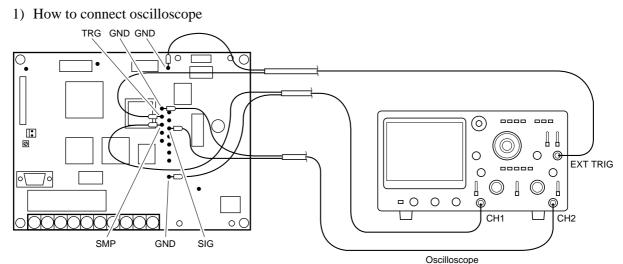


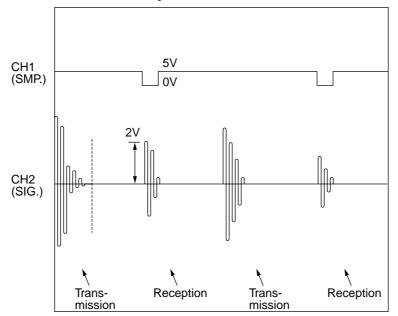
(2) Single-measuring-path system (Z method)



APPENDIX 2. HOW TO MAKE GAUGE PAPER

(1) Prepare a rectangular sheet of paper (or vinyl sheet) with its length of more than 4D and width of 200mm (D, if possible).


2 Draw a line perpendicular to the long side at a point about 100mm from one end.

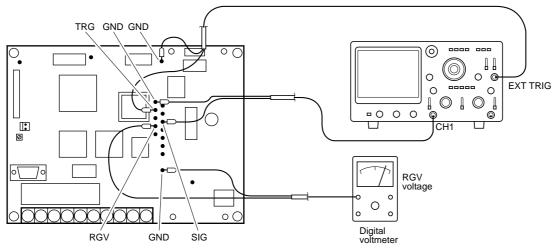

APPENDIX 3. CHECK OF RECEIVED WAVE FORM

Carry out the following in this status.

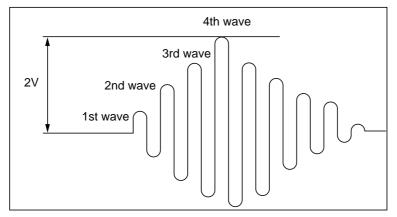
(1) Check of transmission and reception

2) Observe the waveforms on the oscilloscope.

Items to be confirmed:


- The received wave should be nearly at the center of the Low (0V) section of CH1 SMP. Measurement is disabled if the wave deviates from the Low section.
 - Check of piping specifications
 - Check of mounting dimensions
- 2. The received wave level should be at about 2V on the positive side.

If lower than 2V, the received wave is weak and AGC becomes impossible.


- Change the "TRANS. VOLTAGE" to $\times 8$ (refer to 5.4 (1)).
- Check the detector mounting.
- Check for air inside the pipe.

(2) Check of received wave form on oscilloscope

1) Connection of oscilloscope

2) Expand the received wave portion via delayed sweep and check it.

Check:

- 1. The waveform reaches a peak by the 4th wave.
- 2. "RGV" voltage should be 4.5V or more.

APPENDIX 4. SPECIFICATIONS FOR SERIAL TRANSMISSION

(1) General specifications

- Communication system : Semi-duplex
- Synchronizing system : Start-stop synchronizing
- Transmission speed : 300/600/1200/2400/4800/9600/19200 BPS (selectable)
- Parity : Even/odd/none (selectable)
- Data length : 8 bits
- Stop bit : 1 bit/2 bits (selectable)
- Data code : ASCII

(2) Interface specifications

- Electric characteristics : Based on EIA RS-232C :
- Signal connection

Pin No.	Signal	Meaning	Signal direction
2	RxD	Receive data	Input
3	TxD	Send data	Output
4	DTR	Data terminal unit ready	
5	GND	Signal ground	(Not used)
6	DSR	Data set ready	(Not used)
7	RTS	Send request	(Not used)
8	CTS	Send ready	(Not used)

Connector pin layout diagram

$$\bigcirc \begin{array}{c} 1 & 2 & 3 & 4 & 5 \\ \hline \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ & \bigcirc & \bigcirc & \bigcirc \\ & 6 & 7 & 8 & 9 \end{array} \bigcirc$$

- Cable length : Within 15m
- Connector : D-SUB 9-pin plug
- Connection

: 1:1 connection

[FLV]

[Host computer]

RxD —	 TxD
TxD —	 RxD
DTR —	DTR
GND —	 GND
DSR —	DSR
RTS —	RTS
CTS	CTS

(3) Wiring

Use cables and connectors for transmission.

Connect cables to the FLV transmitter using D-SUB 9-pin jack and connector as shown in Item (2) above.

Connect cables to the host computer referring to the instruction manual for the computer.

(Note that the connection of control signal cable may vary depending on the type of computer.)

(4) Setting

Be sure to set transmission speed, parity and stop bit prior to transmission to FLV.

These should be set as follows.

Transmission speed :1200 BPSParity:OddStop bit:1 bit

(5) Communication control

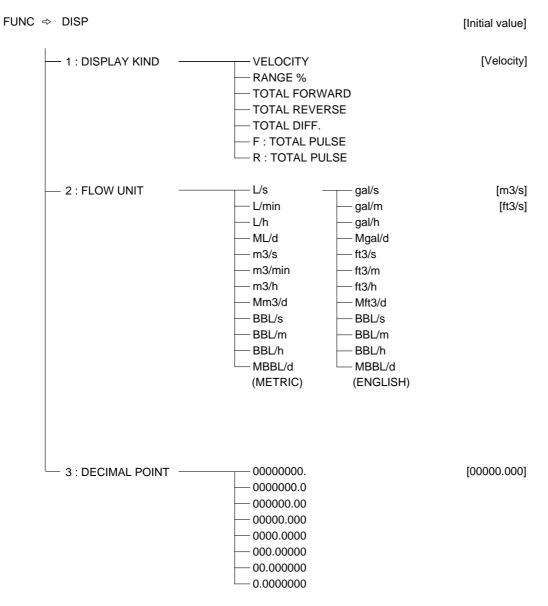
 \bigcirc Method

When a request command is received from the host computer, data are transmitted from FLV. FLV is set in standby mode until a command is received. Upon receiving a command from the host computer, data for the command is transmitted from FLV.

(2) Command

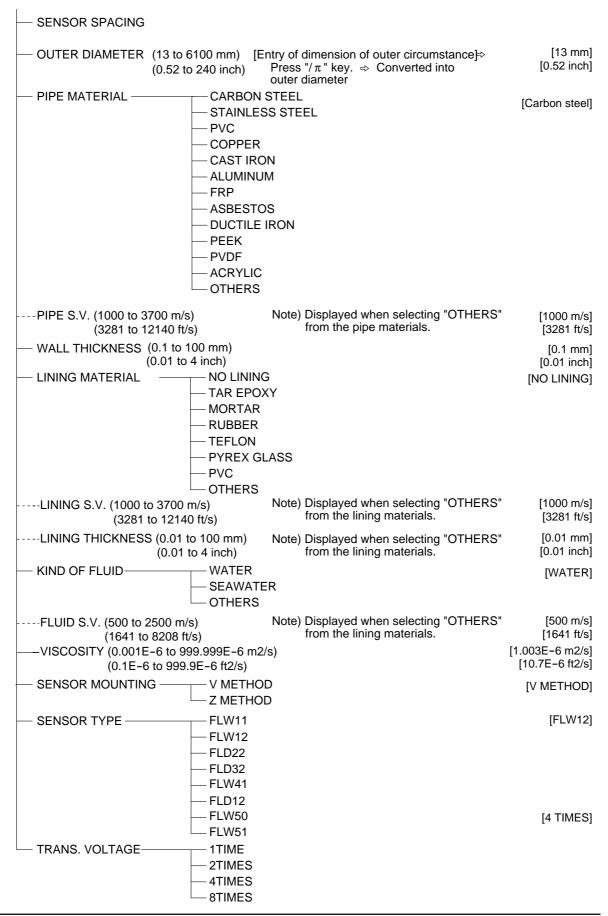
Using ASCII code, command is transmitted from the host computer.

The last code of one command denotes "carriage return (0DH)".


Data	Data Command Data format						
Flow velocity	:UP0000[CR]	:UP0000[CR][LF]±DDDDD.DDDDD [unit][RAS][CR][LF]					
Flow rate	:UP0001[CR]	:UP0001[CR][LF]±DDDDD.DDDDD [unit][RAS][CR][LF]					
RANGE % (Ratio of analog output to range)	:UP0002[CR]	:UP0002[CR][LF]±DDDDD.DDDDD [%][RAS][CR][LF]					
F:TOTAL (Forward integral value)	:UP0003[CR]	:UP0003[CR][LF]#D DDDDDDD [unit][CR][LF]					
R:TOTAL (Reverse integral value)	:UP0004[CR]	:UP0004[CR][LF]#D DDDDDDD [unit][CR][LF]					
F:TOTAL PULSE (Froward integral pulse counter)	:UP0005[CR]	:UP0005[CR][LF]DDDDDDD [FPL][CR][LF]					
R:TOTAL PULSE (Reverse integral pulse counter)	:UP0006[CR]	:UP0006[CR][LF]DDDDDDD [RPL][CR][LF]					
STATUS INF. (Refer to page E-6)	:UP0007[CR]	:UP0007[CR][LF]DDDDDDDDDDDDDDDD [CR][LF]					

List of FLV RS-232C transmission commands

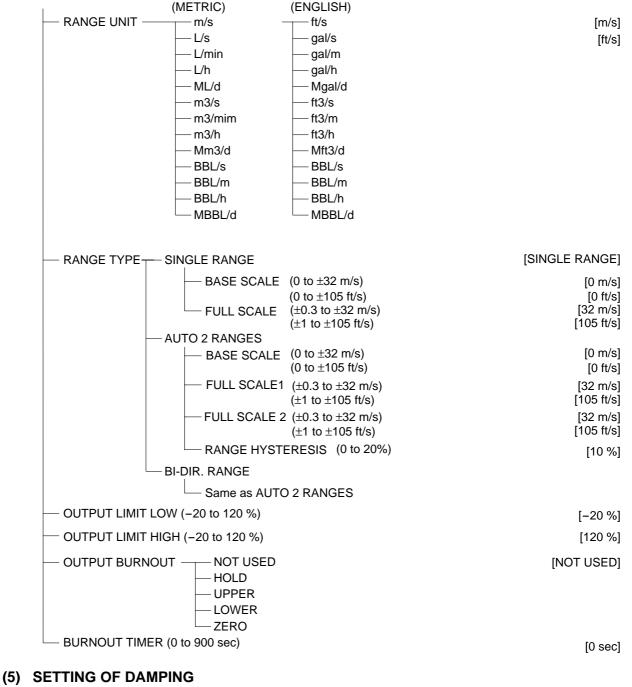
[CR] : Carriage Return [LF] : Line Feed


APPENDIX 5. COMPOSITION OF KEY OPERATION

(1) SETTING OF MEASURE DISPLAY

(2) SETTING OF PIPING SPECIFICATIONS

FUNC ⇒ PIPE


(3) SETTING OF FLOW SWITCH

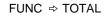
FUNC ⇒ FLOW SW

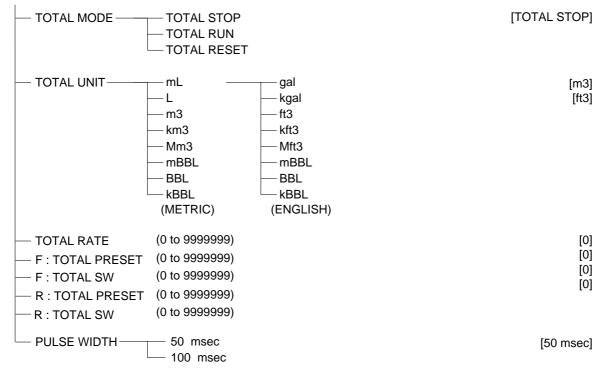
	(0 to ±32 m/s) (0 to ±105 ft/s)	[0 m/s] [0 ft/s]
	(0 to ±32 m/s)	[32 m/s]
	(0 to ±105 ft/s)	[105 ft/s]
FLOW SW HYS.	(0 to 20%)	[10 %]

(4) SETTING OF OUTPUT

FUNC ⇒ DAMP

— DAMPING (0 to 100 sec)


[5 sec]


(6) SETTING OF LOW FLOW OUTPUT CUT

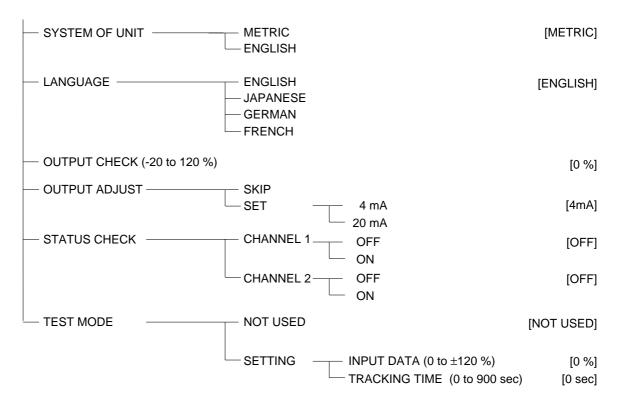
FUNC ⇒ CUT OFF

--- CUT OFF (0 to 5 m/s) [0 m/s] (0 to 16.4 ft/s) [0 ft/s]

(7) SETTING OF TOTAL OUTPUT

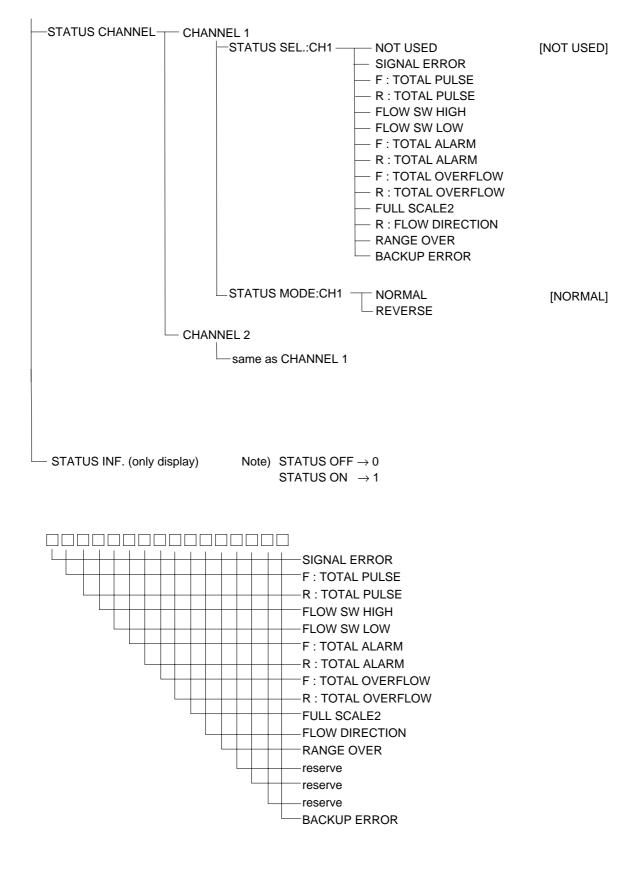
(8) ZERO ADJUSTMENT

FUNC ⇒ ZERO


(9) CALIBRATION OF MEASUREMENT VALUE

 $FUNC \Rightarrow CAL$ (2)

	[0 m/s] [0 ft/s]
CALIBRATION SPAN (0 to 200%)	[100 %]


(10) SETTING OF SYSTEM CONDITION

FUNC ⇒ SYSTEM

(11) SELECTING OF STATUS

FUNC ⇒ STATUS

(12) ERROR CHECK

FUNC ⇒ CHECK

····· R : NORMAL	
····· C : CAL. ERROR	CHECK PIPE DATA
	\square POWER OFF \rightarrow ON
H : RECEIVED	CHECK BUBBLES IN PIPE
SIGNAL ERROR	CHECK PARTICLES IN PIPE
	CHECK PIPE DATA
O : RECEIVED SIGNAL OVERFLOW	— CHANGE MOUNTING METHOD
I : NO RECEIVED	CHECK PIPE DATA
SIGNAL	- CHECK SENSOR MOUNT
	- CHECK CABLE CONNECT
	└─ CHECK SENSOR TYPE
E : RANGE OVER	CHECK OUTPUT RANGE
	\square CHECK TOTAL RATE
B : BACKUP ERROR	EEPROM FAULT
S : SERCHING RECEIVED SIGNAL	PLEASE WAIT NOW
T : TEST MODE	

APPENDIX 6. PIPING DATA

	ninal		ior pipe urrun	Normal thickness							
dian	neter m)	Outer diameter	Schedule 5S	Schedule 10S	Schedule 20S	Schedule 40	Schedule 80	Schedule 120	Schedule 160		
Α	В	(mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)		
15 20 25	$ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1 \end{array} $	21.7 27.2 34.0	1.65 1.65 1.65	2.1 2.1 2.8	2.5 2.5 3.0	2.9 2.9 3.4	3.9 3.9 4.5		5.5 5.5 6.4		
32 40	$ \begin{array}{c c} 1 \frac{1}{4} \\ 1 \frac{1}{2} \end{array} $		1.65 1.65	2.8 2.8	3.0 3.0	3.6 3.7	4.9 5.1	—	6.4 7.1		
50 65	$ \begin{array}{c} 2 \\ 2^{1/2} \end{array} $		1.65 2.1	2.8 3.0	3.5 3.5	3.9 5.2	5.5 7.0	—	8.7 9.5		
80 90	$3 \\ 3\frac{1}{2}$	89.1 101.6	2.1 2.1	3.0 3.0	4.0 4.0	5.5 5.7	7.6 8.1	—	11.1 12.7		
100 125	45	114.3 139.8	2.1 2.8	3.0 3.4	4.0 5.0	6.0 6.6	8.6 9.5	11.1 12.7	13.5 15.9		
150 200	6 8	165.2 216.3	2.8 2.8	3.4 4.0	5.0 6.5	7.1 8.2	11.0 12.7	14.3 18.2	18.2 23.0		
250 300	10 12	267.4 318.5	3.4 4.0	4.0 4.5	6.5 6.5	9.3 10.3	15.1 17.4	21.4 25.4	28.6 33.3		
350 400	14 16	355.6 406.4		—	—	11.1 12.7	19.0 21.4	27.8 30.9	35.7 40.5		
450 500	18 20	457.2 508.0			—	14.3 15.1	23.8 26.2	34.9 38.1	45.2 50.0		
550 600	22 24	558.8 609.6		—	—	15.9 17.5	28.6 34.0	41.3 46.0	54.0 59.5		
650	26	660.4	—		—	18.9	34.0	49.1	64.2		

Stainless steel	nine for	pipe arrangemen	t (IIS	G3459-1988)
Stamess steel	pipe ioi	pipe anangemen	1 (310	05457 1700	,

Polyethylene pipe for city water (JIS K6762-1982)

Nominal	Outer diameter (mm)	1st type (Soft pipe)	2nd type (Hard pipe)		
diameter (mm)		Thickness (mm)	Weight (kg/m)	Thickness (mm)	Weight (kg/m)	
13	21.5	3.5	0.184	2.5	0.143	
20	27.0	4.0	0.269	3.0	0.217	
25	34.0	5.0	0.423	3.5	0.322	
30	42.0	5.5	0.586	4.0	0.458	
40	48.0	6.5	0.788	4.5	0.590	
50	60.0	8.0	1.210	5.0	0.829	

Galvanized steel pipe for city water SGPW (JIS G3442-1988)

Nomin	al pipe	Outer diameter	Thickness
(A)	(B)	(mm)	(mm)
15	1/2	21.7	2.8
20	$\frac{1}{2}$ $\frac{3}{4}$	27.2	2.8
25	1	34.0	3.2
32	$1\frac{1}{4}$ $1\frac{1}{2}$	42.7	3.5
40	$1\frac{1}{2}$	48.6	3.5
50	2	60.5	3.8
65	$2\frac{1}{2}$	76.3	4.2
80	3	89.1	4.2
90	31/2	101.6	4.2
100	4	114.3	4.5
125	5	139.8	4.5
150	6	165.2	5.0
200	8	216.3	5.8
250	10	267.4	6.6
300	12	318.5	6.9

Nominal	1st t	уре	2nd t	2nd type		уре	4th t	уре
diameter (mm)	Thickness of connected portion (mm)	Outer diameter of connected portion (mm)	Thickness of connected portion (mm)	Outer diameter of connected portion (mm)	Thickness of connected portion (mm)	Outer diameter of connected portion (mm)	Thickness of connected portion (mm)	Outer diameter of connected portion (mm)
50	10	70	_	_	_	_	—	—
75	10	95	_	_	_	_	_	_
100	12	124	10	120	9	118	_	_
125	14	153	11	147	9.5	144	_	_
150	16	182	12	174	10	170	_	_
200	21	242	15	230	13	226	11	222
250	23	296	19	288	15.5	281	12	274
300	26	352	22	344	18	336	14	328
350	30	410	25	400	20.5	391	16	382
400	35	470	29	458	23	446	18	436
450	39	528	32	514	26	502	20	490
500	43	586	35	570	28.5	557	22	544
600	52	704	42	684	34	668	26	652
700	_	_	49	798	39	778	30	760
800	_	_	56	912	44	888	34	868
900	_	_	_	_	49	998	38	976
1000	—	_	_	_	54	1108	42	1084
1100	_	_	_	_	59	1218	46	1192
1200	_	_	_	_	65	1330	50	1300
1300	_	_		_	73	1496	57	1464
1500	_	_	_	_	81	1662	63	1626

Asbestos cement pipe for city water (JIS A5301-1971)

Polyethlene pipe for general use (JIS K6761-1979)

Nominal	Outer	1st type	2nd type
diameter (mm)	diameter (mm)	Thickness (mm)	Thickness (mm)
13	21.5	2.7	2.4
20	27.0	3.0	2.4
25	34.0	3.0	2.6
30	42.0	3.5	2.8
40	48.0	3.5	3.0
50	60.0	4.0	3.5
65	76.0	5.0	4.0
75	89.0	5.5	5.0
100	114	6.0	5.5
125	140	6.5	6.5
150	165	7.0	7.0
200	216	8.0	8.0
250	267	9.0	9.0
300	318	10.0	10.0

Ili vinvil ablamida n	ing (aity -		(aria)
Hi vinyl chloride p	ipe (city v	valer pipe	(SIZE)

Nominal diameter	Outer diameter	Thickness of pipe
13	18.0	2.5
20	26.0	3.0
25	32.0	3.5
30	38.0	3.5
40	48.0	4.0
50	60.0	4.5
75	89.0	5.8
100	114.0	7.0
125	140.0	7.5
150	165.0	8.5

Hi vinyl chloride pipe (conduit size)

Nominal pipe	Outer diameter	Thickness of pipe
28	34.0	3.0
35	42.0	3.5
41	48.0	3.5
52	60.0	4.0
65	76.0	4.5
78	89.0	5.5

	Thick	ness	Actual outer	
Nominal pipe	Т		diameter D1	
	Normal pressure pipe	Low pressure pipe		
75	9.0		93.0	
100	9.0	_	118.0	
150	9.5	9.0	169.0	
200	10.0	9.4	220.0	
250	10.8	9.8	271.6	
300	11.4	10.2	322.8	
350	12.0	10.6	374.0	
400	12.8	11.0	425.6	
450	13.4	11.5	476.8	
500	14.0	12.0	528.0	
600	15.4	13.0	630.8	
700	16.5	13.8	733.0	
800	18.0	14.8	836.0	
900	19.5	15.5	939.0	
1000	22.0	_	1041.0	
1100	23.5		1144.0	
1200	25.0		1246.0	
1350	27.5		1400.0	
1500	30.0	—	1554.0	

Vertical type cast iron pipe (JISG5521)

Carbon steel pipe for pipe arrangement (JIS G3452-1988)

Nom	inal pipe		
(A)	(B)	Outer diameter (mm)	Thickness (mm)
15	1/2	21.7	2.8
20	3/4	27.2	2.8
25	1	34.0	3.2
32	1 1/4	42.7	3.5
40	$1\frac{1}{2}$	48.6	3.5
50	2	60.5	3.8
65	$2\frac{1}{2}$	76.3	4.2
80	3	89.1	4.2
90	3 1/2	101.6	4.2
100	4	114.3	4.5
125	5	139.8	4.5
150	6	165.2	5.0
175	7	190.7	5.3
200	8	216.3	5.8
225	9	241.8	6.2
250	10	267.4	6.6
300	12	318.5	6.9
350	14	355.6	7.9
400	16	406.4	7.9
450	18	457.2	7.9
500	20	508.0	7.9

Steel pipe coated for city water STPW (JIS G3443-1968)

-				
Section	V	P	V	U
Nominal pipe (mm)	Outer diameter	Thickness	Outer diameter	Thickness
13	18	2.2		
16	22	2.7		
20	26	2.7	_	_
25	32	3.1		
30	38	3.1	_	_
40	48	3.6	48	1.8
50	60	4.1	60	1.8
65	76	4.1	76	2.2
75	89	5.5	89	2.7
100	114	6.6	114	3.1
125	140	7.0	140	4.1
150	165	8.9	165	5.1
200	216	10.3	216	6.5
250	267	12.7	267	7.8
300	318	15.1	318	9.2
350			370	10.5
400			420	11.8
450	_	_	470	13.2
500	_	_	520	14.6
600		_	630	17.8
700	_	_	732	21.0
800	—	—	835	23.9
		-		

Nominal diameter (A)	Outer diameter (mm)	Thickness (mm)
80	89.1	4.2
100	114.3	4.5
125	139.8	4.5
150	165.2	5.0
200	216.3	5.8
250	267.4	6.6
300	318.5	6.9
350	355.6	6.0
400	406.4	6.0
450	457.2	6.0
500	508.0	6.0
600	609.6	6.0
700	711.2	6.0
800	812.8	7.1
900	914.4	7.9
1000	1016.0	8.7
1100	1117.6	10.3
1200	1219.2	11.1
1350	1371.6	11.9
1500	1524.0	12.7

Hard vinyl chloride pipe (JIS K6741-1984)

		Kinds of symbol				Kinds of	symbol		
				STW	/ 41			STW	400
Nominal diameter	Outer diameter	STW 30	STW 38	Nominal	thickness	STW 290	STW 370	Nominal	thickness
A	mm			А	В			Α	В
		Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
80	89.1	4.2	4.5		_	4.2	4.5		_
100	114.3	4.5	4.9	_	_	4.5	4.9	_	—
125	139.8	4.5	5.1	_	_	4.5	5.1	—	—
150	165.2	5.0	5.5	_	_	5.0	5.5		—
200	216.3	5.8	6.4	_	_	5.8	6.4		—
250	267.4	6.6	6.4	_	_	6.6	6.4		—
300	318.5	6.9	6.4		_	6.9	6.4	_	_
350	355.6	—	—	6.0	_	_	_	6.0	—
400	406.4	—	_	6.0	_	—	—	6.0	—
450	457.2	—	—	6.0	_		—	6.0	—
500	508.0		_	6.0	_	—	—	6.0	—
600	609.6	—	—	6.0	_	_	—	6.0	—
700	711.2	—	—	7.0	6.0	—	—	7.0	6.0
800	812.8	—	—	8.0	7.0		—	8.0	7.0
900	914.4	—	—	8.0	7.0		—	8.0	7.0
1000	1016.0	—	_	9.0	8.0		—	9.0	8.0
1100	1117.6		—	10.0	8.0	_	_	10.0	8.0
1200	1219.2	—	—	11.0	9.0		—	11.0	9.0
1350	1371.6		_	12.0	10.0	_	_	12.0	10.0
1500	1524.0	—	—	14.0	11.0		—	14.0	11.0
1600	1625.6	—	—	15.0	12.0		—	15.0	12.0
1650	1676.4	—	—	15.0	12.0		—	15.0	12.0
1800	1828.8	—	_	16.0	13.0		—	16.0	13.0
1900	1930.4	—	—	17.0	14.0	—	—	17.0	14.0
2000	2032.0	—	—	18.0	15.0	—	—	18.0	15.0
2100	2133.6	—	—	19.0	16.0		—	19.0	16.0
2200	2235.2		_	20.0	16.0	—	—	20.0	16.0
2300	2336.8	—		21.0	17.0	—	—	21.0	17.0
2400	2438.4	—		22.0	18.0	—		22.0	18.0
2500	2540.0			23.0	18.0			23.0	18.0
2600	2641.6		—	24.0	19.0	—		24.0	19.0
2700	2743.2	—		25.0	20.0			25.0	20.0
2800	2844.8	—	—	26.0	21.0	—	_	26.0	21.0
2900	2946.4	-		27.0	21.0	—		27.0	21.0
3000	3048.0	—		29.0	22.0		—	29.0	22.0

Steel pipe coated for city water STW (JIS G3443 1987)

Centrifugal nodular graphite cast iron pipe for city water (A type) (JWWA G-105 1971)

Nominal diameter		Thickness of pipe		
D		- D1		
D	1st type pipe	2nd type pipe	3rd type pipe	DI
75	7.5	_	6.0	93.0
100	7.5	_	6.0	118.0
150	9.5		6.0	169.0
200	7.5	_	6.0	220.0
250	7.5		6.0	271.6
300	7.5	_	6.5	332.8
350	7.5		6.5	374.0
400	8.5	7.5	7.0	425.6
450	9.0	8.0	7.5	476.8
500	9.5	8.5	7.0	528.0

Nominal diameter		Thickness of pipe		
D	1st type pipe	2nd type pipe	3rd type pipe	D1
400	8.5	7.5	7.0	425.6
450	9.0	8.0	7.5	476.8
500	9.5	8.5	8.0	528.0
600	11.0	10.0	9.0	630.8
700	12.0	11.0	10.0	733.0
800	13.5	12.0	11.0	836.0
900	15.0	13.0	12.0	939.0
1000	16.5	14.5	13.0	1041.0
1100	18.0	15.5	14.0	1144.0
1200	19.5	17.0	15.0	1246.0
1350	21.5	18.5	16.5	1400.0
1500	23.5	20.5	18.0	1554.0

Centrifugal nodular graphite cast iron pipe for city water (K type) (JWWA G-105 1971)

Ductile iron specials

Nominal	Thickness
diameter (mm)	of pipe (mm)
75	8.5
100	8.5
150	9.0
200	11.0
250	12.0
300	12.5
350	13.0
400	14.0
450	14.5
500	15.0
600	16.0
700	17.0
800	18.0
900	19.0
1000	20.0
1100	21.0
1200	22.0
1350	24.0
1500	26.0
1600	27.5
1650	28.0
1800	30.0
2000	32.0
2100	33.0
2200	34.0
2400	36.0

Dimensions of centrifugal sand mold cast iron pipe (JIS G5522)

Nominal	Thic	pe T	Actual	
diameter	High pressure	Normal pressure	Low pressure	outer diameter
	pipe	pipe	pipe	D2
75	9.0	7.5	—	93.0
100	9.0	7.5	—	118.0
125	9.0	7.8	—	143.0
150	9.5	8.0	7.5	169.0
150	9.5	8.0	7.5	169.0
200	10.0	8.8	8.0	220.0
250	10.8	9.5	8.4	271.6
300	11.4	10.0	9.0	322.8
350	12.0	10.8	9.4	374.0
400	12.8	11.5	10.0	425.6
450	13.4	12.0	10.4	476.8
500	14.0	12.8	11.0	528.0
600	—	14.2	11.8	630.8
700		15.5	12.8	733.0
800	—	16.8	13.8	836.0
900	—	18.2	14.8	939.0

Arc welded big diameter stainless steel pipe for pipe arrangement (JIS G3468-1988)

Nor	Nominal		Nominal thickness					
	neter	Outer diameter	Schedule 5S	Schedule 10S	Schedule 20S	Schedule 40S		
A	В	(mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)		
150	6	165.2	2.8	3.4	5.0	7.1		
200	8	216.3	3.4	4.0	6.5	9.3		
250	10	267.4	4.0	4.5	6.5	10.3		
350	14	355.6	4.0	5.0	8.0	11.1		
400	16	406.4	4.5	5.0	8.0	12.7		
450	18	457.2	4.5	5.0	8.0	14.3		
500	20	508.0	5.0	5.5	9.5	15.1		
550	22	558.8	5.0	5.5	9.5	15.1		
600	24	609.6	5.5	6.5	9.5	17.5		
650	26	660.4	5.5	8.0	12.7	17.5		
700	28	711.2	5.5	8.0	12.7	17.5		
750	30	762.0	6.5	8.0	12.7	17.5		
800	32	812.8	_	8.0	12.7	17.5		
850	34	863.6	_	8.0	12.7	17.5		
900	36	914.1		8.0	12.7	19.1		
1000	40	1016.0	—	9.5	14.3	26.2		

Arc welded carbon steel pipe (JIS G3457-1976)

Nominal	diameter	Thickness (mm)													
(A)	(B)	Outer diameter (mm)	6.0	6.4	7.1	7.9	8.7	9.5	10.3	11.1	11.9	12.7	13.1	15.1	15.9
350	14	355.6	51.7	55.1	61.0	67.7									
400	16	406.4	59.2	63.1	66.9	77.6									
450	18	457.2	66.8	71.1	78.8	87.5									
500	20	508.0	74.3	79.2	87.7	97.4	107	117							
550	22	558.8	81.8	87.2	96.6	107	118	129	139	150	160	171			
600	24	609.6	89.0	95.2	105	117	127	141	152	164	175	187			
650	26	660.4	96.8	103	114	127	140	152	165	178	190	203			
700	28	711.2	104	111	123	137	151	164	178	192	205	219			
750	30	762.0		119	132	147	162	176	191	206	220	235			
800	32	812.8		127	141	157	173	188	204	219	235	251	258	297	312
850	34	863.6		135		167	183	200	219	233	250	266	275	315	332
900	36	914.4		143		177	194	212	230	247	265	282	291	335	352
1000	40	1016.0				196	216	236	255	275	295	314	324	373	392
1100	44	1117.6						260	281	303	324	346	357	411	432
1200	48	1219.2						283	307	331	354	378	390	448	472
1350	54	1371.6									399	426	439	505	532
1500	60	1524.0									444	473	488	562	591
1600	64	1625.6											521	600	631
1800	72	1828.8											587	675	711
2000	80	2032.0												751	799

Dimensions of centrifugal mold cast iron pipe (JIS G5523 1977)

Nominal	Thickness	Actual outer	
diameter (mm)	High pressure pipe	Normal pressure pipe	diameter D1
75	9.0	7.5	93.0
100	9.0	7.5	118.0
125	9.0	7.8	143.0
150	9.5	8.0	169.0
200	10.0	8.8	220.0
250	10.8	9.5	271.6
300	11.4	10.0	322.8

Cast iron pipe for waste water (JIS G5525)

Nominal diameter	Thickness of pipe	Actual inner diameter	Actual outer diameter
ulameter	Т	D_1	D2
50	6.0	50	62
65	6.0	65	77
75	6.0	74	87
100	6.0	100	112
125	6.0	125	137
150	6.0	150	162
200	7.0	200	214

Hard vinyl chloride pipe for city water (JIS K6742-1975)

Nominal diameter	Outer diameter	Thickness
13	18	2.5
20	26	3.0
25	32	3.5
30	38 48	3.5
40	48	4.0
50	60	4.5
75	89	5.9
100	114	7.1
150	165	9.6

PVDF-HP

Nominal diameter (mm)	SDR33 S16 PN10	SDR21 S10 PN16	SDR17 S8 PN20
	Thickness(mm)	Thickness(mm)	Thickness(mm)
20		1.9	1.9
25		1.9	1.9
32		2.4	2.4
40		2.4	2.4
50		3.0	3.0
63	2.5	3.0	
75	2.5	3.6	
90	2.8	4.3	
110	3.4	5.3	
125	3.9	6.0	
140	4.3	6.7	
160	4.9	7.7	
180	5.5	8.6	
200	6.2	9.6	
225	6.9	10.8	
250	7.7	11.9	
280	8.6	13.4	
315	9.7	15.0	

(a) Velocity	of sound subject to	change	of temperature	re
in water (0 to 100°C)			

111	water (0	to 100	J°C)				
Т°С	Vm/s	т∘С	Vm/s	Т∘С	Vm/s	т∘С	Vm/s
0	1402.74						
1	1407.71	26	1499.64	51	1543.93	76	1555.40
2	1412.57	27	1502.20	52	1544.95	77	1555.31
3	1417.32	28	1504.68	53	1545.92	78	1555.18
4	1421.98	29	1507.10	54	1546.83	79	1555.02
5	1426.50	30	1509.44	55	1547.70	80	1554.81
6	1430.92	31	1511.71	56	1548.51	81	1554.57
7	1435.24	32	1513.91	57	1549.28	82	1554.30
8	1439.46	33	1516.05	58	1550.00	83	1553.98
9	1443.58	34	1518.12	59	1550.68	84	1553.63
10	1447.59	35	1520.12	60	1551.30	85	1553.25
11	1451.51	36	1522.06	61	1551.88	86	1552.82
12	1455.34	37	1523.93	62	1552.42	87	1552.37
13	1459.07	38	1525.74	63	1552.91	88	1551.88
14	1462.70	39	1527.49	64	1553.35	89	1551.35
15	1466.25	40	1529.18	65	1553.76	90	1550.79
16	1469.70	41	1530.80	66	1554.11	91	1550.20
17	1473.07	42	1532.37	67	1554.43	92	1549.58
18	1476.35	43	1533.88	68	1554.70	93	1548.92
19	1479.55	44	1535.33	69	1554.93	94	1548.23
20	1482.66	45	1536.72	70	1555.12	95	1547.50
21	1485.69	46	1538.06	71	1555.27	96	1546.75
22	1488.63	47	1539.34	72	1555.37	97	1545.96
23	1491.50	48	1540.57	73	1555.44	98	1545.14
24	1494.29	49	1541.74	74	1555.47	99	1544.29
25	1497.00	50	1542.87	75	1555.45	100	1543.41

(b) Velocity of sound and density of various liquids

Name of liquid	Т°С	ρg/cm ³	Vm/s
Acetone	20	0.7905	1190
Aniline	20	1.0216	1659
Alcohol	20	0.7893	1168
Ether	20	0.7135	1006
Ethylene glycol	20	1.1131	1666
n-octane	20	0.7021	1192
o-xylene	20	0.871	1360
Chloroform	20	1.4870	1001
Chlorobenzene	20	1.1042	1289
Glycerin	20	1.2613	1923
Acetic acid	20	1.0495	1159
Methyl acetate	20	0.928	1181
Ethyl acetate	20	0.900	1164
Cyclohexane	20	0.779	1284
Dithionic acid	20	1.033	1389
Heavy water	20	1.1053	1388
Carbon tetrachloride	20	1.5942	938
Mercury	20	13.5955	1451
Nitrobenzene	20	1.207	1473
Carbon disulfide	20	1.2634	1158
Chloroform	20	2.8904	931
n-propyl alcohol	20	0.8045	1225
n-pentane	20	0.6260	1032
n-hexane	20	0.654	1083
Light oil	25	0.81	1324
Transformer oil	32.5	0.859	1425
Spindle oil	32	0.905	1342
Petroleum	34	0.825	1295
Gasoline	34	0.803	1250
Water	13.5	1.	1460
Sea water (salinity: 35%)	16	1.	1510

Note) T: temperature, V: velocity of sound

Note) T: temperature, $\rho :$ density, V: velocity of sound

(c)Velocity of sound per piping material

Material	Vm/s
Iron	3230
Steel	3206
Ductile cast iron	3000
Cast iron	2460
Stainless steel	3206
Copper	2260
Lead	2170
Aluminum	3080
Brass	2050
Vinylchloride	2640
Acrylics	2644
FRP	2505
Mortar	2500
Tar epoxy	2505
Polyethylene	1900
Teflon	1240

Note) V: velocity of sound

(d) Dynamic viscosity coefficient of various liquids

Name of liquid	Т°С	$\rho g/cm^3$	Vm/s	$\nu (\times 10^{-6} \text{m}^2/\text{s})$
Acetone	20	0.7905	1190	0.407
Aniline	20	1.0216	1659	1.762
Ether	20	0.7135	1006	0.336
Ethylene glycol	20	1.1131	1666	21.112
Chloroform	20	1.4870	1001	0.383
Glycerin	20	1.2613	1923	11.885
Acetic acid	20	1.0495	1159	1.162
Methyl acetate	20	0.928	1181	0.411
Ethyl acetate	20	0.900	1164	0.499
Heavy water	20	1.1053	1388	1.129
Carbon tetrachloride	20	1.5942	938	0.608
Mercury	20	13.5955	1451	0.114
Nitrobenzene	20	1.207	1473	1.665
Carbon disulfide	20	1.2634	1158	0.290
n-pentane	20	0.6260	1032	0.366
n-hexane	20	0.654	1083	0.489
Spindle oil	32	0.905	1324	15.7
Gasoline	34	0.803	1250	0.4 to 0.5
Water	13.5	1.	1460	1.004(20°C)

Note) T: temperature, $\rho :$ density, V: velocity of sound

v: kinematic viscosity

Hotline

Tel. +49-7025-9208-0 or -20 Fax +49-7025-9208-25

Badger Meter Europa GmbH Subsidiary of Badger Meter, Inc.

Karlstrasse 11 72660 Beuren (Germany) E-mail: badger@badgermeter.de www.badgermermeter.de