CERTIFICATIONS directive 97/23/ec pressure equipment directive

Overview

The PED came into force on the 29th May 2002, the directive relates to how pressure equipment is designed and tested and from there sold into the member states of the European Economic Area (EEA). For simplicity the changes detailed below will be introduced to all local and overseas markets. The changes will become effective 1st of May 2002.

To comply with this directive we needed to ensure that all our flow meters are manufactured in accordance with the directive and where applicable have CE labels attached before sale. The directive classifies pressure equipment into various categories based on several factors such as nominal size, temperature, rated pressure, internal volume and the type of fluid being transmitted. Pressure equipment is then given a category rating of either SEP (Sound Engineering Practice), Cat1, Cat2 or Cat3. Equipment rated at Cat2 or above requires an external body to have surveillance over all facets of design, production and assessment procedures.

We have de-rated several meter models to reduce the classification category. By reducing the classification we can use our existing in house quality process, along with the Essential Health and Safety Requirements (ESHR) of the directive to self certify our meters.

directive

89/336/EEC

Both the standard and deluxe displays have CE marking for the above directive.

SAA flame proof approval

M5, M10, M40, and M50 Stainless Steel and Aluminium pulse version have SAA flame proof approvals for Exd IIB T6 1P66 Class 1 Zone 1

STANDARDS AUSTRALIA

Flameproof Approval

intrinsically safe approval

Standard Display Ex II 1 G D EEx ia Ilc T4 T100°C (KEMA 05ATEX 1168X) Deluxe Display EEx ia 11C T6 (PTB NR.EX- 93.C4033X)

A110 Meter Mount & Remote Units

EEx ia 11B/11C T4 T100oC (KEMA 03ATEX 1074x)

Flange Technical Information

Macnaught meter flanges are sized to flange requirements in the ASME B31.3 Code of Pressure Piping at the stated meter flange's rated pressure (this may differ from the meter's rated pressure); the sizing is based on the meter material properties taken at ambient temperature. Gasket factors used for stainless steel flanges to develop adequate installation and operation gasket seating force are:

Raised face type flange 'm; = 5 and 'y' = 15 MPa requiring bolts of grade ASTM A193-B7.

Flat face type flange 'm' = 1 and 'y' = 1.4 MPa, typical of soft rubber or neoprene, requiring bolts of grade ASTM A193-B7.

The use of gaskets with factors larger than those stated above for the respective flange face types is the responsibility of the end user/installer. For materials other than stainless steel offered in the Macnaught meter range please consult the Macnaught web site for current technical data on flange size, material specification, and pressure rating.

calibration certificate

Model Music / Bertal No. A driters Version	Appart in A	define from to it is live.	63609 -1 M SIARP-1 C 6360 Puls
Series Verder Kongeweitige Teel Hadite Michele & Preme Michele & Preme Michele & Preme Michele Michele Konstehen Michele Frees Former	Alle Angel An Alle Call Call File Alle Alle Alle Alle Alle Alle Alle A	Installa legalari da Calinari Milhari di Tari Milhari di Tari da di Calinari et di Manuferi di Tari Milhari di Tari di Milhari Milhari di Tari di Milhari and Milhari Cara meneri Mila 1913 mengi tanana (apala peneri 1974 kitas di Malaki Kalinari di Parti Cara meneri 300 4113 mengi Li Calinari di Parti di Para mellana anta angeneri di Andri Mantari di Para mellana anta angeneri di Calinari di Parti di Para mellana anta di Parti teranggi dipugia i pengalak dan kapi 100 41 teranggi dipugia i pengalak dan kapi 100 41 teranggi dipugia i pengalak dan kapi 100 40 teranggi dipugia i pengalak dan kapi 100 40 teranggi dipugia i pengalak dan kapi 100 40 teranggi dipugia pengana pengana pengana mela Calinari pengana	Artis 41520 Artis 41520 Folia Artis 41520 Artis Artis Miletto Miletto Miletto Miletto Miletto
		Rindon Orlanmage Editor regeneration with Readoute 41 (Albrigger Editade Parate Prove Robert Parate Prove Robert Af Plane Torr & Date Patter & Coefficient Fatter & & M. Date Fl	UPA Aller in Phys
Actual Volume Programmer Volume 4% According 14% - working Californities Fuel 10	4000 40207 40205 2015	Follow (Editor: Value Alia Fondatilia pressure Mago, Daniel M. Folges Represent Mago, Daniel M. Robertsent Folgeraut: Antone Registrati de Participati (Folgerauti) Representation (Folgerauti) Control (Folgerauti) Fonders Specific Folgerauti) References physics (Folgerauti)	librar Rayman Mal
Jan all him	inserieland and inseriel and and	tere lawand di Hore Alfrederich i di la Maleri Tarach di Maleri Signary conffic	. 0.201

Each M Series meter is checked for accuracy after being manufactured, the process is to enter the specific "K Factor" for that meter and to verify using a one point calibration at the mid range of flow rate of the meter against an approved master meter. Although our standard test is at one point, additional points can be done on request and would incur additional costs.

A certificate as illustrated above is included in the documentation package with the meter. Master meters have their accuracy checked and proving certificates are issued by the National National Measurement Institute, on regular basis.

applications and fluid viscosities : Following are examples of the many applications for which the Macnaught M-SERIES[™] flowmeter range can be used

INDUSTRY	USAGE
Aviation	Fuel Management - Water & Chemical Loading/UnloadingLoading/Unloading
Beverages	Alcoholic Spirits - Fruit Juice - Milk
Cement/Ceramic/Glass	Additives - Water
Chemical	Ammonia - Caustic Soda - Methyl Chloride - Butane - Acetones - Keytones
Cleaning Agents	Detergents - Soaps - Polish
Construction	Fuel - Oils
Cosmetics	Perfume - Foundation Creams - Alcohol - Shampoo
Energy	Fuel - Water - LPG - Freon
Food Industry	Sauces - Pastes - Glucose - Chocolate - Yeast - Mayonnaise
Gas & Oil	Mecaptans - LPG - Additives - Oils
Lubrication	Oils - Coolants - Hydraulic Fluids
Marine	Fuel Monitoring - Loading/Unloading
INDUSTRY	EXAMPLES
Metal Manufacturing	Release Agents - Acids - Water - Oils
Oils & Fats	Vegetable Oils - Cooking Oils - Lards - Tallow
Paints / Inks	Automotive Paints - Commercial Paints - Solvents - Printing Inks
Petrochemical	Ethylene Oxide - Propylene - Vinyl Chloride Monomers - Styrene
Petroleum	Heavy Oil - Gasoline - Bitumen - Kerosene - Naphtha
Pharmaceuticals	Alcohol - Water - Syrups - Glycerine - Liquid Sugar
Pulp & Paper	Dyes - Acids - Additives
Semi-conductors	Acids - Solvents - Chemicals
Textiles	Dyes - Bleach - Chemicals
Toiletries	Shampoo - Conditioner - Mouth Wash - Alcohol - Tooth Paste - Gels
Transport	Fuel Monitoring - Tanker Loading/Unloading

fluid viscosities above 1000cps

To achieve the lowest possible pressure drop, a range of special cut high viscosity optional rotors is available for the M2, M4, M6, M7 M10, M40, M50, M80 & M100 meter models. The M-SERIESTM range of oval gear type Positive Displacement meters has a distinct advantage in measuring extremely viscous materials with the pressure drop being the only limiting factor. With fluids above 1000cps, meter sizing and required flow rate become important decisions.

For example:

=> With SAE90 gear oil @ 20°C/68°F with a viscosity of 1000cps, the maximum pressure drop of an M10 at its maximum flow rate (120lpm/32USGM) would be 100kPa/14.5psi/1BAR. However, the pressure drop with the M40 or M50 meters, at the same flow rate would be:

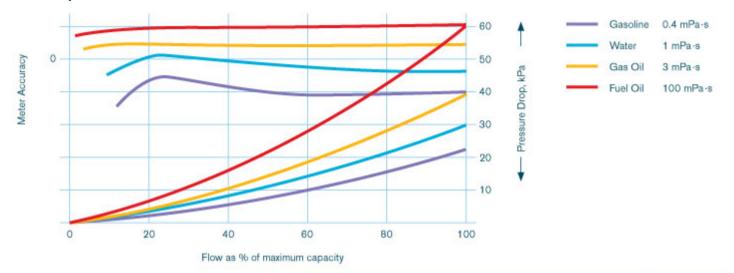
M40: Max 50kPa/7.2psi/0.5BAR

M50: Max 35kPa/5.0psi/0.35BAR

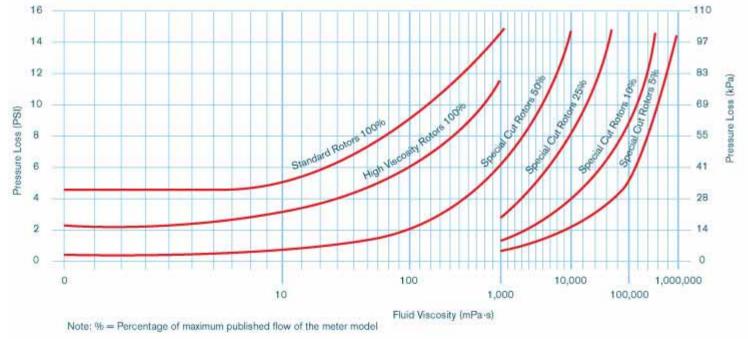
=> To approximately determine the expected maximum flow rate for different high fluid viscosities for each M-SERIES Mmodel at a 100kPa/14.5psi/1BAR pressure drop using high viscosity rotors, the following coefficient factors are applied and Macnaught has created the table at the bottom of this page as a guide:

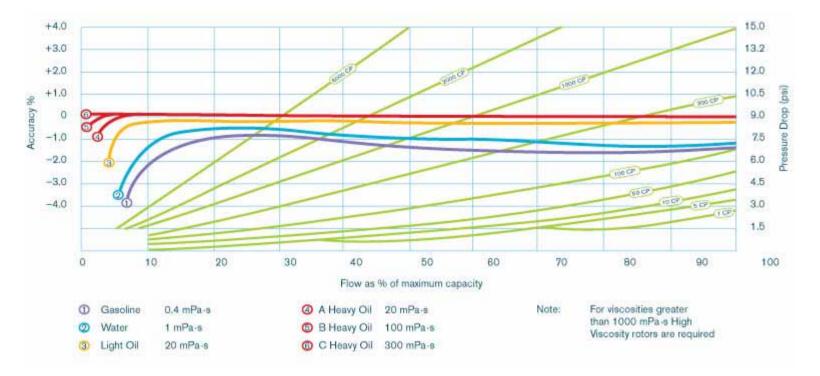
Coefficien	efficient Viscosity M2		M4		M6		M7		
Factor		Litres/Hr	USG/Hr	Litres/Min	USG/Min	Litres/Min	USG/Min	Litres/Min	USG/Min
1	<2500cps	500	132.09	30	7.93	80	21	80	21
0.9	<3000cps	450	118.88	27	7.13	72	19	72	19
0.8	<4000cps	400	105.67	24	6.34	64	17	64	17
0.7	<5000cps	350	92.46	21	5.55	48	13	48	13
0.6	<8000cps	300	79.25	18	4.76	40	11	40	11
0.5	<12000cps	250	66.04	15	3.96	24	6.3	24	6.3
0.4	<25000cps	200	52.83	12	3.17	16	4.2	16	4.2
0.3	<4000cps	150	39.63	9	2.38	8	2.1	8	2.1
0.2	<95000cps	100	26.42	6	1.59	4	1.06	4	1.06
0.1	<450000cps	50	13.21	3	0.79				
0.05	<1000000cps	25	6.60	1.5	0.40				

Coefficient Viscosity


M10

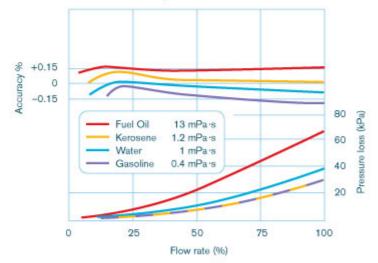
M50


	,						
Factor		Litres/Min	USG/Min	Litres/Min	USG/Min	Litres/Min	USG/Min
1	<2500cps	120	31.7	250	66.04	350	92.5
0.9	<3000cps	108	28.53	225	59.44	324	86
0.8	<4000cps	96	25.36	200	52.83	280	74
0.7	<5000cps	84	22.19	175	46.23	245	65
0.6	<8000cps	72	19.02	150	39.63	210	56
0.5	<12000cps	60	15.85	125	33.02	175	46
0.4	<25000cps	48	12.68	100	26.42	140	37
0.3	<4000cps	36	9.51	75	19.81	105	28
0.2	<95000cps	24	6.34	50	13.21	70	18.5
0.1	<450000cps	12	3.17	25	6.60	36	9.25
0.05	<1000000cps	6	1.59	12.5	3.30	17.5	4.6

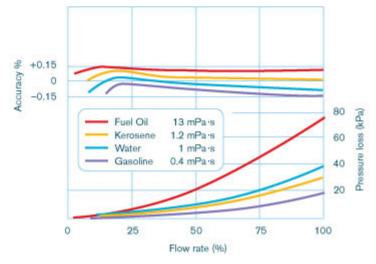

M40

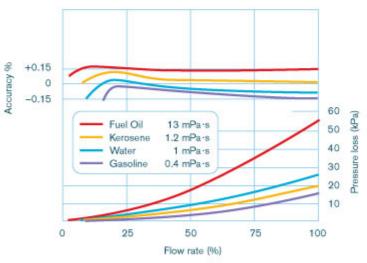
General performance characteristics

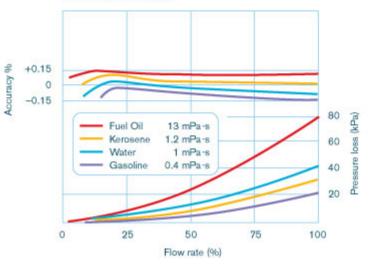


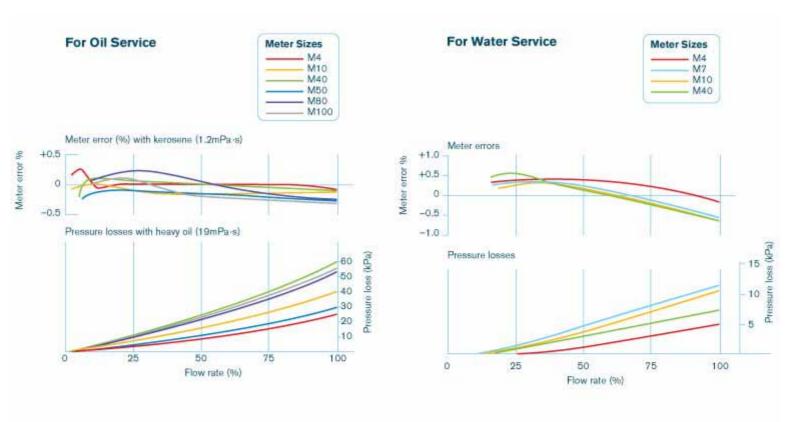


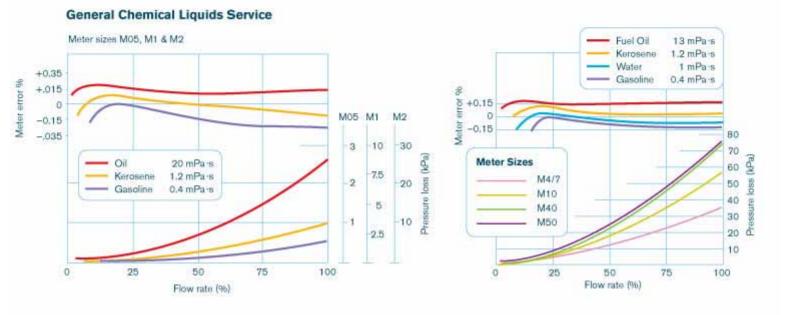
Viscosity versus maximum flowrate - general viscosity/accuracy curves


Meter Errors and Pressure Losses


Meter sizes M4, M10 & M40






Meter sizes M50

Meter sizes M100

